
Lidija Tadić and Tamara Brleković

Flood Frequency Analysis

Hydrological processes are present in time and space in a manner that is partly predict-
able and partly random. We call them stochastic processes. In that case, the value of 
certain observations is not correlated with adjacent observations. This type of approach 
is appropriate for observations/measurements of extreme hydrological events such as 
floods, droughts or hydrological data averaged over longer time period such as annual 
precipitation. Statistical methods based on mathematical principles are only tools, which 
can be used to describe their random variations. These methods are focused on data, not 
on physical processes [7].

Flood is a natural event which cannot be prevented. It is usually defined as a temporary 
covering by water of land not normally covered by water. This shall include floods from 
rivers, mountain torrents, Mediterranean ephemeral water courses, and floods from the 
sea in coastal areas, and may exclude floods from sewerage systems [5]. It is a stochastic 
event the probability of which may be derived from a number of different sources. It 
may be derived directly from historic data on water levels or it may be derived indirectly 
from modelling. In both cases some form of historic data is needed. If modelling is used, 
then the historic data can be rainfall or river flow. The length of the available record 
is important in assessing the magnitude of events with small probabilities. Thus it is 
important to collect data routinely on both rainfall and river flow.

If a sufficiently long length of record is available, then it is possible to estimate the 
magnitude of floods with different probabilities directly from a historic record. Such 
historic data cannot be used to assess the impact of proposed works, so if this is required, 
then some form of modelling would have to be undertaken.

Flood frequency analysis is a hydrological procedure used to determine high flow 
values of certain probabilities in successive river cross-sections or hydrological profiles 
(stations).

Flood frequency estimates of recurrence of floods which is used in designing hydraulic 
structures such as dams, bridges, culverts, dykes, highways, sewage systems, waterworks, 
etc. In order to achieve the optimum and safe design of hydraulic structures, and to avoid 
over designing or under designing, it is necessary to apply statistical methods to determine 
flood frequency. It is also helpful in flood insurance, physical planning of a certain area 
or maintenance of the hydraulic structures.

If we have sufficiently long data series of flood flows, therefore, the calculation of 
empirical frequency distribution could be relatively precise under the assumption that 
natural and anthropogenic processes did not change relationships relevant for flood 
occurrence. In that case frequency is equal to determination of maximum measured 
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annual discharge over a longer time period which can be relevant for design of flood 
protection structures. In most of the stations (rivers), there are not many measured data 
series which could be reliable for optimum and safe designing. Besides, there is always 
a chance of occurrence of flood greater than the maximum historical flood [9]. Problems 
arise when the substantial hydraulic structure in the watercourse has been constructed 
or any other change in the basin has been introduced which significantly changes the 
hydrological regime and discharges [8].
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Figure  1. An example of empirical frequency analysis (compiled by the authors)

An example of empirical frequency distribution is presented in Figure  1 calculated on 
the basis of  71 years long data series of maximum annual discharges recorded on Botovo 
station (the Drava River in Croatia). In the observed period (1926–1998), the highest 
discharge occurred in July  1972 (2,652 m3/s); this is a flood of about  72 years return period.

In order to make flood protection systems safe as much as possible, hydrologists 
have to use different statistical methods and apply statistical procedures on available 
data records. Usually only one parameter has been involved in the analysis (water level 
or discharge) with the following characteristics:

The magnitude of an extreme event is inversely related to the frequency of occurrence. 
In other words, the most severe floods occur less frequently.

Hydrological data are assumed to be independent and identically distributed [7].
The hydrological regime that produces floods is considered to be stochastic, time and 

space independent.
The flood frequency curve is used to relate flood discharge values to return periods to 

provide an estimate of the intensity of a flood event. The discharges are plotted against 
return periods using either a linear or a logarithmic scale. Generally, the frequency of 
maximum discharges is more reliable than water levels, because they are less dependent 
on riverbed deepening or other changes of the watercourse [8].
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Figure  2. An example of theoretical frequency analysis (compiled by the authors)

An example of application of theoretical frequency distributions is presented in 
 Figure 2. Five of the most common theoretical distributions were tested (Pearson III, 
Log-Pearson, Gumbel EV-I, Normal and Log-normal) and Log-normal distribution was 
selected as the most precise. Compared to results presented in Figure  1, the maximum 
recorded discharge is flood of about  100 years return period. According to presented 
Log Normal theoretical distribution, flood of  1,000 years return period would have 
a discharge of  3,245 m3/s.

As it was illustrated, the result of statistical calculations are floods of different return 
period. Return period, also referred to as ‘recurrence interval’ is a term adopted by 
scientists and policy makers to estimate the likelihood and severity of extreme events 
(such as cyclones/hurricanes, flooding and earthquakes). It is based on the statistical 
analysis of data (such as historical climatic records, flood measurements), to provide 
a probability that an event of any given magnitude will occur in any given year. This 
probability is often used to assess the risk of these events for human populations. The 
concept is based on the magnitude-frequency principle, where large magnitude events 
(such as major cyclones) are comparatively less frequent than smaller magnitude incidents 
(such as rain showers).

In this approach, which is common in modern flood frequency analysis, it is essential 
to understand the concept of return period. The theoretical definition of return period is 
the inverse of the probability (generally expressed in %) that an event will be exceeded in 
a certain year. For example, the return period of a flood might be  1,000 years, expressed 
as its probability of occurring it would be  1/1,000, or  0.1% in any year. It means that, 
in any given year, there is a  0.1% chance that it will happen, regardless of when the last 
similar event was. Or, it is  10 times less likely to occur than a flood with a return period 
of  100 years (or a probability of  10%).
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The most common misunderstanding about return periods, for example, the  100-year 
return period is that the flood of this magnitude will only occur once in  100 years. It is 
essential to understand that if a flood with a  100-year return period occurs now, it does 
not mean that another flood of this magnitude will not occur in the next  100 years.

EU Flood Directive (Directive/2007/60/EC)

Different countries used to have different approaches to flood frequency analysis as a basis 
of flood protection measures. The most common return periods used in flood protection 
are  2,  5,  10,  25,  50,  100,  1,000 and  10,000 years.

Since  2007, members of the EU accepted the common document, Flood Directive 
[5]. The main reason is the fact that flood risk is best managed on a basin level, not 
at individual member state level. Without going deeply into the articles of the Flood 
Directive, its major tasks are determining flood hazard maps of the geographical areas 
which could be flooded according to the following scenarios:

 – floods with a low probability, or extreme event scenarios
 – floods with a medium probability (likely return period ≥  100 years)
 – floods with a high probability, where appropriate

For each scenario referred to in the previous paragraph the following elements are 
important:

 – the flood extent
 – water depths or water level
 – where appropriate, the flow velocity or the relevant water flow

These scenarios are important regarding the problem of return period. According to the 
Flood Directive, floods of high probability are all flood events with a return period of 
<100 years. For example, the Danube Flood Risk Atlas (2012) recognised areas along 
the Danube River affected by floods of a  30 years return period (HQ30). These areas 
along the river are frequently flooded. Generally flood plains, wetlands, forests and 
agricultural areas are affected. Usually the inundation areas of a  30-year-flood should 
serve for retention purposes in order to reduce the overall flood risk and be kept free 
of settlements buildings. These retention areas are often valuable biotopes, such as in 
Hungary and the Danube Delta.

The flood event with ≥100 years return period (HQ100) is widely accepted as the 
design level for flood protection measures along the Danube River. Normally, flood 
hazard in the areas between the limits HQ30 and HQ100 is known mainly to the residents 
having lived there for a long time. Agricultural land use is predominant; permission for 
settlement use should only be given exceptionally and with the provision of preventive 
construction measures.

During very rare events (HQ1000), flood extents and depths are distinctly larger, 
respectively higher than what has been observed so far. Existing flood protection works 
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might be overtopped or might fail to perform, thus describing a residual risk scenario. 
For the areas between a HQ100 and HQ1000 flood, no direct restrictions of land use 
arise; however, preventive flood strategies and emergency planning should be accounted 
for, especially regarding vulnerable objects. As potential preventive measures (such as 
evacuation plans) are highly dependent on flood depth, not only the limits of flooded 
areas, but also flood depth classes are illustrated.

According to the Flood Directive, the first scenario is defined as: determining floods 
with a low probability, or extreme event scenarios are given as a framework, which 
means that each country can make its own choice within it. The choice usually depends 
on previously established reference values.

Illustrations of hazard maps of the geographical areas which could be flooded accord-
ing to chosen return periods are given in Figure  3.

Figure  3. An example of flood hazard map at HQ100 and HQ1000 for one section of the Danube River [4]

Figure  3 presents one section of the Danube River and possible water depth related to 
discharges of  100 and  1,000 years return period (HQ100, HQ1000). There are dykes along 
both riversides and their height keeps water in the river flood plain until discharge exceeds 
HQ100 (red line), or flood with a medium probability (likely return period ≥100 years). 
Discharges of low probability (HQ1000) will cause floods of an adjacent area with water 
depth  0.5–4 m, depending on topographical conditions.
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Figure  4 presents the relationship between the return period and related flooded areas 
in the Danube countries. It is clear that floods of low probability (extreme flood scenarios) 
have the greatest affected area according to the Danube Flood Risk Atlas.
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Figure  4. An example of the relationship between the flooded area and return period [4]

Empirical flood frequency

Flood frequency analyses are used to predict design floods for sites along a river. As it 
was illustrated in Figure  2, in order to estimate the return period of a given discharge or 
vice versa, the observed data is fitted with a theoretical distribution using a cumulative 
density function (CDF). This helps the users in analysing the flood frequency curve.

Using the annual peak flow data available for a number of years, flood frequency 
analysis is used to calculate statistical information such as mean, standard deviation and 
skewness which is further used to create frequency distribution graphs.

The mostly used frequency distributions in hydrology of extreme events are: Gumbel 
distribution (in the United Kingdom), Normal distribution, Log-normal distribution and 
Log-Pearson III distribution (in the USA). After choosing the probability distribution 
that best fits the annual maxima data, flood frequency curves are plotted. These graphs 
are then used to estimate the corresponding design flow values.

Procedure:
 – using the observed annual maximum discharges of a period as long as it is possible 

to calculate basic statistical information such as mean values, standard deviations, 
skewness, etc.



Flood Frequency Analysis

45

 – calculation of recurrence intervals (Figure  1) by using empirical equations such as 
Weibull equation which is one of mostly used empirical distribution and according 
to some authors it is the most accurate [6]

It is not the only one, there are a number of empirical distributions as it is presented in 
Table  1.

Table  1. Several methods of empirical distribution [6]
Method of “RI” Proponent
m/N +  1 Weibull (1939)
(m-0.31)/(N +  0.38) Beard (1943)
(m-0.44)/(N +  0.12) Gringorten (1963)
(m-0.5)/N Hazen (1914)
(m-0.3)/N +  0.4 Čegodajev (?)

Data records of maximum annual discharges are sorted in descending order and each 
annual peak have a certain rank, called the magnitude number, “m” (the highest value 
is ranked as m =  1, and the smallest value is valued as N). The number of items (data 
points) in the record is “N”. The recurrence interval (RI) for a particular river profile 
(station) gives us information, how often we expect the river to exceed a certain discharge.

After the calculation of basic statistical parameters it is necessary to calculate the 
maximum annual discharge for different return periods by applying distributions.

Each distribution has its own characteristics and mathematical basis.

Normal (Gauss) distribution

In spite of the fact that Normal (Gauss) distribution is a symmetric two-parameters 
distribution and flood waves ordinarily have non-symmetric distribution, this distribution 
is very often used in flood frequency analysis.

The analytical expression is given in the form of frequency density function:
2
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p(x) = normal distribution density function

s2 = standard deviation (variance) of the distribution

MQ  = mean value of the distribution

Introducing of transformation
MM QQz

  
 (2)
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gives an equation of standard normal distribution:
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2
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 (3)

If the general variable x designates discharge Q, flood discharge QMp of different return 
periods (p) can be calculated as:

zQQ MMp    (4)

Figure  5 illustrates a standardised normal distribution and its properties. It is clear that the 
density function is symmetric about the mean value (x) and the function mode coincides 
with the mean value. The variance of standardised normal distribution s2 =  1 and the 
mean value x =  0. The maximum value of density function is:

 1

399.0
2

1)(yp  (5)

Figure  5. Cumulative density function [8]

The area below the curve presented in Figure  5 equals  1 and represents the number of 
values N. The total area divided in  2 parts defines  50% of the sample group in the interval:

[ x – 0.6745s, x +  0.6745s] (6)

The maximum deviation in this case is smax =  3s.
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Log-normal (Galton) distribution

If some data from the given data series are expressed as log values, in that case Normal 
distribution changes into Log-normal or Galton frequency distribution.
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q = log value of maximum discharge

qo = mean value of logarithms of log QM series

In Galton distribution, the reduced deviation is:

oqqz
  
 (10)

And the logarithm value of the maximum discharge (of different return periods) will be:

zqq op    (11)

The anti-logarithm of qp will give us the maximum discharge of the given return period 
(Annex: Table I).

Gumbel distribution

The Gumbel distribution is non-symmetric and two-parametric. According to the Gumbel 
probability of maximum (flood) discharge occurrence is defined by exponential function:

*)(*)(
)( QQaQQa

QM
MM eaep    

     (
 (12)

where Q* and a presents parameters of the Gumbel distribution. Q* is a mode of Gumbel’s 
curve:

a
QQ M

577.0
  
 (13)

Number  0.577 is Euler’s constant and a is the parameter defined as:

780.01
a   

 (14)
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As in the previous distribution, the introduction of

*)( QQaz M  (15)

into the equation (10) will give
zz e

QM
ez

QM epeaep )) ((  (16)

For different return periods, the Gumbel distribution has defined the relationship between 
p(QM) and z (listed in the Annex: Table II) which can easily lead us to maximum 
discharges of any return period with solving an equation:

z
a

QQ Mp
1*

         
 (17)

Pearson III distribution

The Pearson III distribution is a non-symmetric three-parametric distribution. The origi-
nal form of this contribution is very complex and using it in practice is time-consuming, 
so in hydrological problems its modification is more often used proposed by Foster-Ribkin 
(Annex: Table III) that [8] defined as:

MvMp QcQ )1(  (18)

MQ = mean value of the distribution

cv = variation coefficient

ϕ = function defined as ϕ = f(cs,p) where cs presents the skew coefficient. Values of ϕ 
function are listed in Annex: Table IV for different return periods p and skew coefficients 
cs assuming that the variation coefficient cv =  1.

Testing

The presented frequency distributions will give different maximum discharges for the 
same return period. An example presented in Figure  2 shows a wide range of Q50 (max-
imum discharge of  50 years return period), between  2,300 and  2,550 m3/s.

The decision of the most appropriate, or the most accurate method depends on the 
result of statistic tests which has to be applied on calculated theoretical distributions to 
determine if a calculated theoretical distribution matches measured values. There are 
many statistic tests but, frequently used tests are the Kolmogorov-Smirnov test and the 
χ2 test.
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Kolmogorov-Smirnov test

The Kolmogorov-Smirnov Goodness-of-Fit Test (K-S test) compares data with a known 
distribution and lets you know if they have the same distribution. Although the test 
is nonparametric – it does not assume any particular underlying distribution – it is 
commonly used as a test for normality to see if your data is normally distributed. More 
specifically, the test compares a known hypothetical probability distribution (e.g. the 
normal distribution) to the distribution generated by your data – the empirical distribution 
function [22].

Measure of tolerance DN is given by equation:

 
)()(max xFxD NN

     -∞ < x < +∞   
 -∞ < x < +∞ (19)

where φ N(x) presents empirical distribution and F(x) is the theoretical distribution.

Predefined confidence level is usually α =  0.05 (5%). Table  2 presents critical values of 
Do related to the number of data in series (n).

Table  2. Critical values (Do) of K-S test [8]

n 5 10 15 20 25 30 35 40 45 50 >50
Do 0.56 0.41 0.34 0.29 0.27 0.24 0.23 0.21 0.20 0.19 1.36/n  1/2

If the calculated value of DN<Do theoretical distribution is acceptable. If not, the tested 
theoretical distribution should be rejected. In a case of testing several distributions, the 
best one is the one with the smallest DN value.

χ2 test (Chi-squared test)

The Chi-squared test can also be used to determine how well theoretical distributions, 
such as normal, binomial, etc. fit empirical distributions, obtained from measured data 
[10].

In the Chi-squared test, it is necessary to define the nul-hypothesis (Ho), which con-
firms and the alternative hypothesis (Ha), which rejects the statement. If under hypothesis 
Ho the computed value of the χ2 test is greater than some critical value alpha (α), we would 
reject Ho. Otherwise we would accept it. The critical value is chosen by the researcher. 
The usual alpha value is  0.05 (5%), but it could also have other levels like  0.01 or  0.10.

In equation:

j j

jj

e
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2

         
 (20)
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symbols oj and ej are representing respectively observed (measured) data and expected 
frequency in th j-th cell [10].

Calculation models

In order to perform the flood frequency analysis, the first step is to get the time series 
of discharges and/or water levels for the hydrological station, which is of interest from 
water authorities. This type of analysis is usually performed on time series of maximum 
annual discharges. Then, the record of maximum discharges, which was previously sorted 
in descending order is fitted with a theoretical distribution using a cumulative density 
function. This can be done in Excel, but some knowledge of statistic and probability 
functions is necessary. There are many theoretical distributions integrated within Excel 
functions. For example, input window for Gamma distribution from Excel is shown in 
Figure  6.

Figure  6. Input parameters for Gamma distribution in Excel (compiled by the authors)

Besides basic functions in Excel, there are many programs or stand-alone applications 
or add-inns for Excel. One of them is EasyFit. This applications includes goodness-of-fit 
tests and more than  50 distributions. For each distribution, EasyFit provides several 
functions to be used in Excel sheets. After the distributions are fitted, EasyFit will display 
the Fitting Results window (Figure  7) for the distributions comparison and selection of 
the best model. EasyFit supports all the most popular goodness-of-fit tests, including the 
Kolmogorov-Smirnov, Anderson-Darling and Chi-squared tests. Once the distributions 
are fitted, EasyFit displays the goodness-of-fit reports which include the test statistics 
and critical values calculated for various significance levels.
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Figure  7. Fitting results window provided by EasyFit (compiled by the authors)

Another software which can be used for distribution fitting is ModelRisk. ModelRisk 
is a Monte Carlo simulation Excel add-in that allows to include uncertainty in their 
spreadsheet models. A ModelRisk user replaces uncertain values within their Excel model 
with special ModelRisk quantitative probability distribution functions that describe the 
uncertainty about those values. ModelRisk then uses Monte Carlo simulation to auto-
matically generate thousands of possible scenarios. It contains more than  130 probability 
distributions. The distribution’s parameters are estimated using maximum likelihood 
estimates (MLE) [23].

The fitted distributions are ranked according to the SIC, AIC (Akaike) and HQIC infor-
mation criteria. For these holds: the lower an information criterion, the better the fit. The 
advantage of AIC and the other Information Criteria is the fact that they take into account 
the number of parameters estimated, and penalise for overfitting: a model that has a good 
fit using fewer parameters is preferred over the one that needs more parameters.1 The AIC 
is the least strict of the three in penalising for more parameters, while SIC is the strictest.

Figure  8. Distribution fit window from ModelRisk (compiled by the authors)

1 For more information see www.vosesoftware.com/riskwiki/ComparingfittedmodelsusingtheSICHQICo-
rAICinformationcritereon.php

http://www.vosesoftware.com/riskwiki/ComparingfittedmodelsusingtheSICHQICorAICinformationcritereon.php
http://www.vosesoftware.com/riskwiki/ComparingfittedmodelsusingtheSICHQICorAICinformationcritereon.php
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Statgraphics is another software which contains several procedures for manipulating 
statistical probability distributions.  45 distributions may be plotted, fit to data, and used 
to calculate critical values or tail areas (Figure  9). Random samples may also be generated 
from each of the distributions with this stat software. Goodness-of-fit tests used in 
Statgraphics are ShapiroWilks, the Kolmogorov-Smirnov and Chi-squared tests.

Figure  9. Probability distributions available in Statgraphics (compiled by the author)

These are just some of the software used for distribution fitting. There are also R software, 
CumFreq, Minitab and others.

When the appropriate function for analysed dataset of maximum annual discharges 
is obtained, it is necessary to calculate the maximum annual discharge for different 
return periods. Those values, together with the riverbed and floodplain geometry can be 
input parameters for hydraulic analysis which can be done in software like HEC-RAS 
or MIKE. Results of hydraulic analysis can be plotted on maps using GIS software in 
order to obtain flooded areas according to different return periods, or flood risk maps 
just like the one shown in Figure  3.

This was done, for example, in the hydrological research of the Kopački rit Nature Park 
with analysis of its flooding frequency depending on the Danube River water levels and 
discharges for different return periods [20]. Time series of maximum annual discharges 
of the Danube River were analysed from the Bezdan station (Serbia) in the period from 
 1951 to  2008. These data were analysed by several distributions in order to achieve the 
Danube River discharges and water levels of  5,  10,  25,  50 and  100 return period (Figure 
 10). As the Log-Pearson III distribution is recommended for flood frequency analysis, 
it was chosen to be the most appropriate.
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Figure  10. Discharges according to different distributions for different return periods [20]

Hydraulic analysis performed with software HEC-RAS included, besides discharges, 
water levels at Aljmaš station, discharges of the Drava River, which is the tributary of the 
Danube River, riverbeds and floodplain geometries and land cover. Obtained results were 
analysed with GIS in order to see flooded areas according to different return periods. In 
Figure  11 are shown maps of the flooded area for  5 and  100 years return periods.
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Figure  11. Maps of the flooded area for  5 and  100 years return periods [20]

Flood coincidence

In the previous sections, only the problem of one parameter flood frequency has been 
analysed, usually the maximum annual water level or discharge assumed to be stochastic. 
Unfortunately, there are many locations in the world where the flood of one river coincides 
with the flood of its tributary which enormously increases damages in the given area. 
In this case, the term “coincidence” presents the occurrence probability of two stochastic 
events X and Y at the same time (simultaneously), where X presents the event in the 
main watercourse and Y is the event in its tributary [2].

Only in the Danube River basin there are several potentially critical profiles. In the 
zone of significant interaction between the mainstream and its tributary, it is re com-
mended to apply flood coincidence methodology which gives a statistically sound analysis 
concerning an important feature of flood genesis. To judge this, the evaluation of historical 
data is of great importance. In the case of a complex river system, limited by two inlet 
profiles (on the mainstream and its tributary) and one outlet profile (on the mainstream), 
without a significant influence of inflow from the inter-catchment, the relevant combina-
tions of maximum annual discharges and their corresponding (synchronous) discharge 
values has to be calculated [1].
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Figure  12. An example of maximum discharges coincidence at Sava and Drina rivers [2]

Figure  12 presents the probabilities of coincidence of two flood waves – on the Sava 
River (main watercourse) and the Drina River, its tributary. Analysis was done on the 
basis of historical data. An extreme flood event, occurred in May  2014, was a flood of 
 1,000 years return period (0.1%).

Statistical calculation is rather complex and it will not be explained in details (see 
references).

Copulas

The coincidence of two flood waves, of a main river and its tributary, represents a mul-
tivariate hydrological event. Another similar problem in flood frequency analysis is to 
determine the relationship hydrograph – return period. Besides information on flood 
peak (maximum dischargers), great influence on magnitude of floods have also volume 
and duration of flood wave. In such cases, the consideration of more than one variable 
in analyses is reasonable. In order to comprehend and connect these variables, joint 
cumulative distribution function (cdf) and probability density function (pdf) of involved 
variables are needed. Because of this, multivariate statistical analyses have to be applied. 
Some multivariate approaches were introduced in flood frequency analysis during last 
years, but they all had three limitations [12]:

 – all univariate marginal distributions have to belong to the same family, but ana-
lysed variables could show different margins

 – mathematical formulations become complicated when increasing the number of 
variables

 – it is not possible to distinguish marginal and joint behaviour of studied variables

Copula functions overcome these limitations and present a useful tool in the field of 
multivariate analyses. The copula actually ‘couples’ the marginal distributions together 
to form a joint distribution. In analysis of coincidence two flood waves, distribution of 
maximum discharges of main river represents one marginal distribution and distribution 
of maximum discharges of tributary represents another one. The copula connects mar-
ginal distributions to one joint distribution and gives the probability of their coincidence. 
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The advantages in using copulas to model joint distributions are [13]:
 – flexibility in choosing marginal distributions
 – analysis of more than two variables;
 – separate analysis of marginal distribution

When analysing two variables, which is the simplest analysis because of the small number 
of variables, bivariate copula is used. A bivariate copula C is the joint distribution function 
of two uniform random variables and can be written as [14] [15] [18]:

C: [0.1]2→[0.1] (21)

Two following conditions must be fulfilled: C(1,u) = C(u,1) = u and C(u,0) = C(0,u) = 0 and 
the second one C(u1,u2) + C(v1,v2) – C(u1,u2) – C(v1,v2) ≥  0 if u1 ≥ v1, u2 ≥ v2 and u1, 
u2, v1, v2 ϵ [0.1]. The link between copula and the joint distributions is based on the 
theorem of Sklar:

FX,Y(x,y) = C[FX(x), FY(y)] (22)

where

FX,Y(x,y) are the joint cumulative distribution function of the random variables, and
FX, FY are marginal distribution functions.

There are two groups of copulas: elliptical and the Archimedean family. Elliptical copulas 
are the copulas with elliptical distributions, which have an elliptical form and therefore 
symmetry in the tails. Important copulas in this family are the Gaussian and the student’s 
copula. The Gaussian copula is often used because of his simple form. Archimedean 
copulas are widely applied, because they are not difficult to construct. Archimedean 
copulas have only one dependency parameter, instead of a dependency matrix. The most 
important Archimedean copulas are Gumbel, Clayton and Frank [16]. Different types of 
copulas are shown in Figure  13.

Figure  13. Some types of copula functions [17]
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It is evident from Figure  13 that different copulas have different appearances and char-
acteristics. The main characteristic is tail dependence. It is a very important feature of 
copulas, which has a great effect on how well the joint distribution captures the behaviour 
of extreme events. The tail dependence is a measure of extreme correlation, which marks 
the probability of an extreme occurrence for a variable when the extreme value of another 
variable occurs. When the variables of the marginal distribution in the upper tail (top 
right corner) of a copula are dependent on each other, we can say that the upper tail of the 
copula is dependent. From Figure  13 it can be seen that the Clayton copula can capture 
only lower tail dependence, the Frank copula family cannot exhibit any tail dependence 
and the Gumbel copula can only capture upper tail dependence [19].

There are different criteria in order to determine which copula is better suited for the 
analysed problem. The Kolmogorov-Smirnov test and the χ2 test, which are previously 
mentioned and explained, can be used. The Anderson-Darling goodness-of-fit and the 
Bayesian copula selection method can also be mentioned. Statistical measures of fit 
called information criteria such as the Schwarz Information criterion (SIC), known 
as the Bayesian information criterion or BIC, Akaike information criterion (AIC) and 
Hannan-Quinn information criterion (HQIC) can also be used [17].

As mentioned earlier, flood frequency analysis based on copula is mostly used in areas 
where confluences of tributaries can be found. For example, in [11] bivariate frequency 
analysis using a copula function is used to calculate the probability of coincidence of 
maximum water levels in the Drava and the Danube rivers. Results showed a  0.7% 
probability that highest water levels occur simultaneously in both rivers, which can be 
seen in the upper right corner of Figure  14. This is important information for future 
flood risk management because their coincidence would be disastrous for citizens in 
surrounding areas.

Figure  14. Probability of coincidence of maximum water levels of the Drava and Danube rivers [11]

Another example is from the Sava River basin [21]. The Sava River is the right-hand 
tributary of the Danube. Two tributaries of the Sava River were selected for analyses 
and it was shown that the proposed copula approach estimates recent flood events more 
accurately than the univariate flood frequency analysis based on the observation data.
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Case study

In order to show how to fit distribution to observed discharges and how to calculate 
discharges for different return periods, time series of the Danube River discharges 
measured at Bogojevo station in Serbia will be analysed.

Maximum annual discharges of the Danube River in the period from  1950 to  2017 are 
analysed (Figure  15). Basic statistical parameters of this time series are shown in 
Table 3. Measured values for the years  1996,  1997 and  2010 are missing, so frequency 
analysis is done without them.
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Figure  15. Maximum annual discharge of the Danube River at Bogojevo station (Serbia) (compiled by 
the authors)

Table  3. Basic statistical parameters of maximum annual discharges (compiled by the authors)

Number of observations 65

Mean value 5,493.862

Minimum value 3,010

Maximum value 9,250

Sum 357,101

Standard deviation 1,325.226

Variance 1,756,224

Skew 0.82733

The next step is to put discharge values in descending order and assign each value a rank. 
The highest value (in this case  9,250) has rank  1 and the smallest one,  3,010, has rank 
 65 which is the total number of values. After this, it is possible to fit distributions to 
observed time series.

Two empirical distributions, Weibull and Čegodajev, and three theoretical are cal-
culated. Normal and Gamma distributions are calculated using Excel functions only 
and the Log-Pearson III distribution is determined also in Excel but with formulas and 
coefficients for this distribution.
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Empirical distribution

Probabilities of occurrence for Weibull and Čegodajev distribution are calculated accord-
ing to formulas shown in Table  1.

Results are shown in Figure  16. Probabilities of occurrence according to these two 
empirical distributions are the same.

Figure  16. Weibull and Čegodajev distributions

Theoretical distribution

Log-Pearson III distribution is highly recommended for flood frequency analysis. The 
main advantage of this method is successful application on relatively short time series 
in order to obtain floods for much longer return periods. The equation and parameters 
of Log-Pearson III distribution are:

PRlog x log x K log x
  
 (23)

where

xPR – is the variable value relevant for different return periods,

x – is the random variable (discharge, water level),

 – is the mean value of logarithms of random variables,

K – is the frequency coefficient; it is in a function of the skewness coefficient Cs and 
return period (Annex: Table V),

σ – is the standard deviation.
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This distribution is based on logarithmic values of discharges, and not discharges 
themselves, so the first step is to calculate logarithmic values of discharges and then the 
skewness coefficient Cs and standard deviation of this logarithmic time series. After 
this, it is easy to calculate discharges for different return periods. Results are shown in 
Table  4 and in Figures  17 and  18.

Table  4. Results of Log-Pearson III distribution (compiled by the authors)

Probability Return period K1 (C =  0.1) K2 (C =  0.2) K logQ Q(m3/s)

100 1 –2.252 –2.178 –2,1826 3.5065670 3210.45848

50 2 –0.017 –0.033 –0.0319 3.7247979 5306.37492

20 5 0.836 0.83 0.83037 3.8123042 6490.89067

10 10 1.292 1.301 1.30043 3.8600018 7244.39027

4 25 1.785 1.818 1.81592 3.9123096 8171.64876

2 50 2.107 2.159 2.15573 3.9467904 8846.88533

1 100 2.4 2.472 2.46747 3.9784235 9515.32264

Figure  17. Log-Pearson III distribution (compiled by the authors)
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Figure  18. Discharges for different return periods according to Log-Pearson III distribution (compiled 
by the authors)

Normal distribution is calculated using Excel function NORM.DIST. To use this function, 
it is necessary to calculate the first mean value and standard deviation of the observed 
time series. This is already done (Table  3), so below in Figure  19 are the results.

Figure  19. Normal distribution (compiled by the authors)
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Gamma distribution is also determined with Excel function for this distribution, but first 
it is necessary to calculate the α and β parameters:

α = E(x)2/Var (24)

β = Var/ E(x) (25)

where

E(x) – is the expected value (mean),

Var – is the variance.

Results of the Gamma distribution are shown in Figure  20.

Figure  20. Gamma distributions (compiled by the authors)

All theoretical distributions are compared with empirical ones with goodness-of-fit 
 Chi-squared test. When using this test as an Excel function, two sets must be selected: 
actual and expected. In this case, the actual range is empirical distribution and the 
expected range is a theoretical one. Obtained results showed that all distributions are 
a good fit to both empirical ones. When all distributions are plotted together (Figure  21), 
this good fit can be seen also.
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Figure  21. All distributions plotted together (compiled by the authors)

Final remarks

Flood frequency analysis briefly described in the previous chapters presumes the availa-
bility of reliable and sufficiently long hydrological data records of maximum discharges 
or water levels.

Very often, especially on small rivers (catchments) there are no measured data with 
such characteristics. These catchments are called ungauged and the procedure of flood 
frequency determination differs compared to these, because the only measured parameter 
is precipitation. It is necessary, therefore, to apply some of the various hydrological 
models, rainfall-runoff models (RFRO) or statistical models to determine the hydrological 
parameters of the flood waves.

Flood is a stochastic event and statistics is the only tool used to give us as much 
accurate probability of its occurrence as possible. There are many results of methods 
(empirical and theoretical) but none of them is absolutely accurate.

Besides, each catchment is changing in time, even if there are no drastic human 
interventions, which additionally makes our calculations and prognosis more complex.
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Annex

Table I. Log normal (Galton)distribution –   values for different return periods [8]

Return period (year) Probability of occurrence p (%) z  

10,000 0.01 3.715 0.6901

1,000 0.1 3.090 0.5740

100 1 2.326 0.4321

50 2 1.054 0.3816

25 4 1.752 0.3255

10 10 1.281 0.2380

5 20 0.842 0.1564

2 50 0.000 0.000

1.25 80 –0.842 –0.1564

1.1111 90 –1.281 –0.2380

1.0417 96 –1.752 –0.3255

1.0204 98 –2.054 –0.3816

1.0101 99 –2.326 –0.4321

1.0010 99.9 –3.090 –0.5740

1.0001 99.99 –3.715 –0.6901

Table II. Gumbel distribution – “z” values for different return periods [8]

Return period (year) Probability of occurrence p (%) P1 z  

10,000 0.01 0.9999 9.21 253.3

1,000 0.1 0.999 6.91 190

100 1 0.99 4.60 126.5

50 2 0.98 3.91 107.5

25 4 0.96 3.20 88.0

10 10 0.90 2.25 61.9

5 20 0.80 1.50 41.3

2 50 0.50 0.37 10.2

1.25 80 0.20 –0.48 –13.2

1.1111 90 0.10 –0.83 –22.8

1.0417 96 0.04 –1.15 –31.6

1.0204 98 0.02 –1.35 –37.1

1.0101 99 0.01 –1.53 –42.1

1.0010 99.9 0.001 –1.94 –53.4

1.0001 99.99 0.0001 –2.20 –60.5
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Table III. Pearson III distribution – Probability of occurrence p (%), according to Foster-Ribkin [8]

czM
Probability of occurrence p (%)

0.01 0.1 1 2 4 10 20 50 80 90 96 98 99 99.9 99.99
–2.0  1.00 0.99 0.96 0.96 0.90 0.78 0.31 –0.6 –1.3 –2.3     
–1.5  1.31 1.26 1.23 1.15 1.02 0.82 0.24 –0.7 –1.3 –2.0     
–1.0  1.79 1.59 1.37 1.22 1.13 0.85 0.16 –0.8 –1.3 –2.0     
–0.8  2,02 1.74 1.65 1.42 1.17 0.85 0.13 –0.8 –1.3 –1.9     
–0.6  2.27 1.88 1.76 1.51 1.20 0.85 0.10 –0.8 –1.3 –1.9     
–0.4  2.54 2.03 1.90 1.60 1.23 0.85 0.07 –0.8 –1.3 –1.8     
–0.2  2.81 2.18 1.98 1.67 1.26 0.85 0.03 –0.8 –1.3 –1.8     

0 3.72 3.09 2.33 2.04 1.75 1.28 0.84 0.00 –0.9 –1.3 –1.7     
0.2 4.16 3.38 2.47 2.16 1.81 1.30 0.83 0.00 –0.9 –1.3 –1.6     
0.4 4.61 3.66 2.61 2.26 1.87 1.32 0.82 –0.1 –0.9 –1.2 –1.5     
0.6 5.05 3.96 2.76 2.35 1.94 1.33 0.80 –0.1 –0.9 –1.2 –1.5     
0.8 5.50 4.24 2.89 2.45 2.00 1.34 0.78 –0.1 –0.9 –1.2 –1.4     
1.0 5.96 4.53 3.02 2.54 2.05 1.34 0.76 –0.2 –0.9 –1.1 –1.3     
1.2 6.41 4.81 3.15 2.62 2.09 1.34 0.73 –0.2 –0.8 –1.1 –1.3     
1.5 7.09 5.26 3.33 2.74 2.15 1.33 0.69 –0.2 –0.8 –1.0 –1.1     
2.0 8.21 5.91 3.60 2.91 2.23 1.30 0.61 –0.3 –0.8 –0.9 –1.0     
2.5 9.30 6.60 3.83 3.04 2.28 1.24 0.53 –0.4 –0.7 –0.8 –0.8     
3.0 10.4 7.25 4.02 3.16 2.30 0.42 0.42 –0.4 –0.6 –0.7 –0.7 –0.7 –0.7 –0.7 –0.7

Table IV. Values of ϕ function in Pearson III distribution [8]

Return period (year) Probability of occurrence p (%) ϕ
10,000 0.01 5.50
1,000 0.1 4.24

100 1 2.89
50 2 2.45
25 4 2.00
10 10 1.34
5 20 0.78
2 50 –0.13

1.25 80 –0.86
1.1111 90 –1.17
1.0417 96 –1.47
1.0204 98 –1.60
1.0101 99 –1.74
1.0010 99.9 –2.02
1.0001 99.99 –2.18
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Table V. Frequency factors K for Gamma and Log-Pearson type III distributions [24]

 

Recurrence interval in years
1.0101 2 5 10 25 50 100 200

Skew coefficient 
Percent chance (> =) =  1-F

 
Cs 99 50 20 10 4 2 1 0.5

3 –0.667 –0.396 0.42 1.18 2.278 3.152 4.051 4.97
2.9 –0.69 –0.39 0.44 1.195 2.277 3.134 4.013 4.904
2.8 –0.714 –0.384 0.46 1.21 2.275 3.114 3.973 4.847
2.7 –0.74 –0.376 0.479 1.224 2.272 3.093 3.932 4.783
2.6 –0.769 –0.368 0.499 1.238 2.267 3.071 3.889 4.718
2.5 –0.799 –0.36 0.518 1.25 2.262 3.048 3.845 4.652
2.4 –0.832 –0.351 0.537 1.262 2.256 3.023 3.8 4.584
2.3 –0.867 –0.341 0.555 1.274 2.248 2.997 3.753 4.515
2.2 –0.905 –0.33 0.574 1.284 2.24 2.97 3.705 4.444
2.1 –0.946 –0.319 0.592 1.294 2.23 2.942 3.656 4.372

2 –0.99 –0.307 0.609 1.302 2.219 2.912 3.605 4.298
1.9 –1.037 –0.294 0.627 1.31 2.207 2.881 3.553 4.223
1.8 –1.087 –0.282 0.643 1.318 2.193 2.848 3.499 4.147
1.7 –1.14 –0.268 0.66 1.324 2.179 2.815 3.444 4.069
1.6 –1.197 –0.254 0.675 1.329 2.163 2.78 3.388 3.99
1.5 –1.256 –0.24 0.69 1.333 2.146 2.743 3.33 3.91
1.4 –1.318 –0.225 0.705 1.337 2.128 2.706 3.271 3.828
1.3 –1.383 –0.21 0.719 1.339 2.108 2.666 3.211 3.745
1.2 –1.449 –0.195 0.732 1.34 2.087 2.626 3.149 3.661
1.1 –1.518 –0.18 0.745 1.341 2.066 2.585 3.087 3.575

1 –1.588 –0.164 0.758 1.34 2.043 2.542 3.022 3.489
0.9 –1.66 –0.148 0.769 1.339 2.018 2.498 2.957 3.401
0.8 –1.733 –0.132 0.78 1.336 1.993 2.453 2.891 3.312
0.7 –1.806 –0.116 0.79 1.333 1.967 2.407 2.824 3.223
0.6 –1.88 –0.099 0.8 1.328 1.939 2.359 2.755 3.132
0.5 –1.955 –0.083 0.808 1.323 1.91 2.311 2.686 3.041
0.4 –2.029 –0.066 0.816 1.317 1.88 2.261 2.615 2.949
0.3 –2.104 –0.05 0.824 1.309 1.849 2.211 2.544 2.856
0.2 –2.178 –0.033 0.83 1.301 1.818 2.159 2.472 2.763
0.1 –2.252 –0.017 0.836 1.292 1.785 2.107 2.4 2.67

0 –2.326 0 0.842 1.282 1.751 2.054 2.326 2.576
–0.1 –2.4 0.017 0.846 1.27 1.716 2 2.252 2.482
–0.2 –2.472 0.033 0.85 1.258 1.68 1.945 2.178 2.388
–0.3 –2.544 0.05 0.853 1.245 1.643 1.89 2.104 2.294
–0.4 –2.615 0.066 0.855 1.231 1.606 1.834 2.029 2.201
–0.5 –2.686 0.083 0.856 1.216 1.567 1.777 1.955 2.108
–0.6 –2.755 0.099 0.857 1.2 1.528 1.72 1.88 2.016
–0.7 –2.824 0.116 0.857 1.183 1.488 1.663 1.806 1.926
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Recurrence interval in years
1.0101 2 5 10 25 50 100 200

Skew coefficient 
Percent chance (> =) =  1-F

 
Cs 99 50 20 10 4 2 1 0.5

–0.8 –2.891 0.132 0.856 1.166 1.448 1.606 1.733 1.837
–0.9 –2.957 0.148 0.854 1.147 1.407 1.549 1.66 1.749

–1 –3.022 0.164 0.852 1.128 1.366 1.492 1.588 1.664
–1.1 –3.087 0.18 0.848 1.107 1.324 1.435 1.518 1.581
–1.2 –3.149 0.195 0.844 1.086 1.282 1.379 1.449 1.501
–1.3 –3.211 0.21 0.838 1.064 1.24 1.324 1.383 1.424
–1.4 –3.271 0.225 0.832 1.041 1.198 1.27 1.318 1.351
–1.5 –3.33 0.24 0.825 1.018 1.157 1.217 1.256 1.282
–1.6 –3.88 0.254 0.817 0.994 1.116 1.166 1.197 1.216
–1.7 –3.444 0.268 0.808 0.97 1.075 1.116 1.14 1.155
–1.8 –3.499 0.282 0.799 0.945 1.035 1.069 1.087 1.097
–1.9 –3.553 0.294 0.788 0.92 0.996 1.023 1.037 1.044

–2 –3.605 0.307 0.777 0.895 0.959 0.98 0.99 0.995
–2.1 –3.656 0.319 0.765 0.869 0.923 0.939 0.946 0.949
–2.2 –3.705 0.33 0.752 0.844 0.888 0.9 0.905 0.907
–2.3 –3.753 0.341 0.739 0.819 0.855 0.864 0.867 0.869
–2.4 –3.8 0.351 0.725 0.795 0.823 0.83 0.832 0.833
–2.5 –3.845 0.36 0.711 0.711 0.793 0.798 0.799 0.8
–2.6 –3.899 0.368 0.696 0.747 0.764 0.768 0.769 0.769
–2.7 –3.932 0.376 0.681 0.724 0.738 0.74 0.74 0.741
–2.8 –3.973 0.384 0.666 0.702 0.712 0.714 0.714 0.714
–2.9 –4.013 0.39 0.651 0.681 0.683 0.689 0.69 0.69

–3 –4.051 0.396 0.636 0.66 0.666 0.666 0.667 0.667




