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Eloszo

Tobb mint tiz év telt el azota, hogy a Nemzeti Kozszolgalati Egyetemen,
pontosabban egyik elddintézményében, a Zrinyi Mikloés Nemzetvédelmi
Egyetemen egyetemi jegyzet késziilt a miiszaki mechanika témakorében,
azon beliil is szilardsagtanbol.

Ez id6 alatt nemcsak az ebben a témakorben targyalt jelenségeknek,
miiszaki megoldasoknak jelentek meg ujabb alkalmazasi teriiletei, hanem
az egyetemi képzésben is tobb valtozas tortént. Mivel (i) szakokon 0j targyak
oktatasa folyik, ezért a valtozo tantargyi kdvetelményekhez az oktatasi anya-
goknak is igazodniuk kell. Ennek a célnak kivan jelen jegyzet megfelelni,
ugyanis céliranyosan az NKE Hadtudomanyi és Honvédtisztképz6 Karon,
a katonai logisztika BSc szakon oktatott Mechanika II. kurzus tananyaganak
lefedésére késziilt. A megkozelités elméleti jellegli, az itt levezetett dssze-
flggések alkalmazasat kiilon példatar segiti.

A jegyzet feltételezi a Mechanika I. jegyzet anyaganak, illetve a dif-
ferencial- és integralszamitasnak az alapvetd ismeretét, de a matrixalgebra
sziikséges Osszefiiggéseit targyalja. A leglényegesebb angol szakkifejezések
nemcsak elsé szovegkozi eléfordulasukkor jelennek meg, hanem 6ssze-
gyUjtve is megtalalhatok a jegyzet végén.

Budapest, 2019. 06. 03.

Dr. Toth Bence



Vakat oldal



1. Fizikai mennyiségek

A fizikai mennyiségeknek harom alapvetd tipusa létezik: skalar-, vektor-
¢és tenzormennyiségek. Mivel ez utdbbiakra a szilardsagtan targyalasakor
sziikség lesz, ebben a fejezetben roviden 6sszefoglaljuk alapvetd tulajdon-
sagaikat.

1.1. Matrixok és tenzormennyiségek

A skalaris mennyiségek azok a fizikai mennyiségek, amelyeknek csak
nagysaguk van, értékiik nem fiigg a koordinata-rendszer megvalasztasatol.

A vektorialis mennyiségek olyan fizikai mennyiségek, amelyeknek
nemcsak nagysaga, hanem jellemzd iranya is van. Eppen ezért az Sket
jellemzd vektor tengelyétdl, az ugynevezett hatasvonaltol eltérd tengelyek
iranyaban mas (kisebb) hatast fejtenek ki.

A tenzorialis mennyiségek abban kiilonboznek a vektorialis mennyi-
ségektol, hogy egy adott térbeli pontban attdl is fligg a nagysaguk, hogy
milyen tengely iranyaban mérjiik az adott fizikai mennyiség nagysagat. Ezt
a fajta viselkedést, hogy melyik térbeli tengely iranyaban mekkora az adott
mennyiség értéke, egy igynevezett tenzorral irhatjuk le, amelyet egy adott
koordinata-rendszerben egy matrixszal reprezentalhatunk. A matrix nxm
darab mennyiség téglalap alaku elrendezése. Mig a skalarokat dontott,
a vektorokat félkovér kisbetiikkel szokas jelolni, addig a tenzorokat, illetve
az azokat egy adott koordinata-rendszerben reprezentalé matrixokat félkovér
nagybetlikkel. A matrixok egyes elemeire azzal a két szammal hivatkozunk,
hogy hanyadik sorban és azon beliil hanyadik oszlopban talalhatoak, azaz
az A matrix 3. sordnak 4. elemére 4,,-ként hivatkozunk.

Azokat a matrixokat, amelyek ugyanannyi sorbol és oszlopbol allnak,
négyzetes matrixoknak nevezziik. Az ilyen matrixok azon elemeit, amelyek
két koordinataja azonos, diagonalis elemeknek nevezziik, a matrix ezen
atlojat pedig, amelyben ezek az elemek elhelyezkednek, féatlonak. A tobbi
elemet offdiagonalis elemnek nevezziik. Azt a négyzetes matrixot, amelynek
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a féatlojaban minden elem 1, az offdiagonalis elemei pedig mind nullék,
egységmatrixnak nevezziik, és E-vel (vagy az angol szakirodalomban I-vel,
mint identity) jeloljik.

Tenzorialis mennyiség példaul a tehetetlenségi nyomaték: egy rudat
konnyebb a hossztengelye mentén, mint arra merdlegesen megporgetni.
Az eltér6 tengely eltérd viselkedést eredményez.

Ugyanugy, ahogy egy haromdimenzids vektorialis mennyiséget jel-
lemz6 szamharmas is fligg a valasztott koordinata-rendszert6l, ugyantugy
mas koordinata-rendszerben masok lesznek egy tenzorialis mennyiséget
jellemzé 3x3-as matrix elemei.

1.2. Diadikus szorzat

Két vektor skalaris szorzata egy skalar, két vektor vektorialis szorzata egy
vektor. Két vektornak 1étezik egy harmadikféle szorzata is, amelyet diadikus
szorzatnak neveziink, és az eredménye egy matrix. Ekkor egy n dimenzios
oszlopvektort (v) szorzunk meg egy m dimenzids sorvektorral (w"), ami-
nek eredménye egy n sorbol és m oszlopbdl allo, azaz egy nxm-es matrix
(U) lesz. Magat a diadikus szorzas miveletét a o szimbdlummal jeldljiik,
megkiilonboztetendd a skalarszorzattol:

1 U=vow

Ebben az esetben nem feltétleniil szitkséges a w vektort w'-ként jellni,
hiszen a diadikus szorzas miiveleti jele miatt egyértelmii, melyik az oszlop-
¢és melyik a sorvektor. Az egyes U, elemeket, amelyekre hivatkozhatunk
az U matrix (i, j) elemeiként is, tehat az alabbi mddon képezziik:

@ U, =vw,

azaz a megfeleld vektorok i-edik és j-edik elemeit szorozzuk Gssze és ren-
dezziik matrixba, mintha egydimenzids vektorokat skalarszoroznank ossze:

[ w, - w,]
U, U, - U,
Y nw, nw, - nhw, U U U
* 21 22 2m
3) vew =|v, vw, vw, - vw, | = . — o |=U
Unl Unl e Unm
Un yn wl vn w2 e yn wm
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Az igy kapott matrixot szokas még diadnak is nevezni. Minden diad mat-
rix, de nem minden matrix diad, azaz nem minden matrix allithat6 el6 két
vektor diadikus szorzataként.

1.3. Matrix szorzasa vektorral

Egy matrixot szorozhatunk vektorral is, matrixszal is. Ahogy két vektor
skalaris szorzata esetén, itt is fontos szerephez jutnak a dimenziok, de
ezenfeliil az sem mindegy, hogy egy matrixot egy vektorral jobbrdl vagy
balrdl szorzunk 6ssze. Két n dimenzios vektor, a és b esetén mindegy volt,
melyiket tekintjiik oszlop- és melyiket sorvektornak, hiszena*b=>b" a. Egy
matrixot balrél megszorozni egy vektorral azonban csak akkor lehet, ha
a vektor dimenzidja megegyezik a matrix sorainak szamaval. Hasonloan,
egy matrixot jobbrél megszorozni egy vektorral csak akkor Iehet, ha a vek-
tor dimenzidja megegyezik a matrix oszlopainak szamaval.

Egy nxm-es U matrixot ugyanis Gigy szorzunk meg balrél egy n dimen-
zids v* sorvektorral, hogy a matrixot ugy tekintjiik, mintha m darab n dimen-
zi0s oszlopvektorbol allna, és ezeket az oszlopvektorokat egyesével 6ssze-
szorozzuk skalarisan a v* sorvektorral, majd a megfelel6 elemeket vektori
alakba rendezziik. Az eredmény igy egy m dimenzids p* sorvektor lesz:

Uu U12 Ulm
U21 Uzz U2m
@ P
Ur/l UV!2 Uﬂm
vU=ly o, = o] [n p = p,] =P

aholp =v U, +v,U, +...+v U, azaz éltalanosan kifejezve:

Q) p].:le1j+sz2j+...+annjZZUiUij
i=1
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Egy nxm-es U matrixot hasonldan szorzunk meg jobbrél egy m dimenzios
w oszlopvektorral: a matrixot gy tekintjiik, mintha n darab m dimenzios
sorvektorbol allna, és ezeket a sorvektorokat egyesével Osszeszorozzuk
skalarisan a w oszlopvektorral, majd a megfelel6 elemeket vektori alakba
rendezziik. Az eredmény igy egy n dimenzios q oszlopvektor lesz:

w,
W,
wm
(©6)
U11 U12 Ulm 9
Uw= U21 U.zz Uzm 9, =q
Unl Un2 Unm qn

aholg =U,w, +U,w,+ ...+ U w , azaz altalanosan kifejezve:
m m

(7 9, =U,w+U,w,+..+U, w, = ZUﬁwj
=1

1.4. Matrix szorzasa matrixszal

Két matrix (példaul U és V) egymassal val6 szorzasa az elébbickben bemu-
tatottakkal analdog mddon torténik: Az UV szorzat esetében az U matrixot
sor-, a V matrixot oszlopvektorok osszességének tekintjiik, és egyesével
Osszeskalarszorozzuk 6ket. Ez természetesen azt is jelenti, hogy ez a mat-
rixszorzas csak akkor végezhet6 el, ha U egy nxm-es, V pedig egy mxr-es
matrix:



FIZIKAI MENNYISEGEK 15

Vi Va Vie
Vi Vi Ve
(8) I/ml I/mZ er
U11 U12 Ulm ‘/Vn ‘Vlz ‘er
UvV= U:21 U:zz Uzzm ‘Vm "szz ‘/VZV -W
Unl Unz Unm ‘Wnl ‘Vnz ‘Vnr

A W szorzatmatrix egy altalanos eleme tehat a kdvetkezé modon fejezhetd ki:

ij 171 im’ mj

© W, =[UV], =UV, +U,V, +...+U,V, kiUikaj
=1

Az igy eredményiil kapott W matrix egy nxr-es matrix lett. Ez azt is jelenti,
hogy — jelen példank esetében — ha n # r, akkor a VU matrixszorzat nem is
létezik, mivel a szorzas elvégzésekor eltéré dimenzidji vektorokat kellene
Osszeskalarszorozni.

De ha n =r, akkor is altalaban az igaz, hogy UV # VU, az egyenlOség
csak szimmetrikus matrixok esetén all fenn, hiszen

(10) [vu] =>Wvu,
k=1
¢és igy a (9) és (10) egyenletek 6sszehasonlitasabol
(11) UV=VUeV, =V, & U,=U, Vij

Konnyen belathato, hogy az egységmatrixra igaz, hogy
(12) AE=EA=A

ha az A olyan matrix, hogy az AE és az EA szorzatok 1éteznek.

1.5. Determinans

Egy vektorbol egy skalart képezni az abszolut értékének meghatarozasaval
lehet, ami gyakorlatilag az 5nmagaval vett skalarszorzat négyzetgyokének
a kiszamitasa. Egy matrixhoz is hozza tudunk rendelni egy jellemz6 ska-
lart, amit a matrix determinansanak neveziink. Jel6lése: det A vagy |Al.
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Kiszamitasanak modja 2x2-es matrixokra:

13 decB=da| C|” Uiy
(13) et—etcd—cd—a—c
Kiszamitasanak modja 3x3-as matrixokra:
a b ¢
(14) detC=|d e f|=aei—afh+bfg—bdi+cdh—ceg
g h i

A determinans meghatarozhat6 az ugynevezett eljeles aldeterminansok
kifejtésével is. Ehhez kivalasztjuk a matrix egy sorat, majd a sor elsé ele-
méhez tartozd oszlopot és sort toréljiik a matrixbol, és a megmarado elemek
determinansat képezziik az ugynevezett sakktablaszabaly szerinti el6jellel.
Ez azt jelenti, hogy a matrix (1,1) eleméhez tartozo aldeterminanst pozitiv
eldjellel vessziik figyelembe, az (1,2) és a (2,1) elemekhez tartozokat nega-
tiv eldjellel, és igy tovabb:

(15)

Ezt elvégezziik a kivalasztott sor minden elemére. Ennek megfeleléen a fenti C
matrix determinansa az aldeterminansok szerinti kifejtéssel a kovetkez6 lesz:

e fl |6 f| |d e b ¢ |a ¢ a b

detC=2z ‘—b | tc =—d |+e |- —

(16) i g i g ) h il g i g b
b ¢ a c| la b
BRIV VA A VI

amelyben ha kifejtjiikk a 2x2-es determinansokat, a (14) eredményére jutunk.
Ez a mddszer jol hasznalhatéo nagyobb matrixok determinansanak meg-
hatarozasara is: minden lépésben eggyel csokkentjiik a kifejtendd deter-
minansok dimenziojat.



2. Hazas és nyomas

Egy egyensulyi erérendszer adott keresztmetszetre csak gy gyakorolhat
egytengelyfi tiszta hlizast (nyomast), ha az egyenstly két feltétele (3 M. =0
¢s 2'F, = 0) mellett azt is megkoveteljiik, hogy egydltalan semmilyen forgato-
nyomaték ne hasson a szerkezetre, azaz az er6sebb M, = 0 feltétel teljesiilése
is sziikséges. Er6k természetesen nemcsak hathatnak, hanem hatniuk is kell
arendszerre. Mindebbdl azonban kovetkezik, hogy az erk hatasvonalanak
egy pontban kell metszeniiik egymast.

Az eddig kiszabott feltételek azonban megvalosithatoak lennének egy
egyensulyi erérendszerrel is, amelynek egyes komponenseit a test két végére
csoportositanank: egy adott x tengelyre vett pozitiv meréleges vetiilet(i erd-
ket az egyik, a negativ meréleges vetiiletiicket a masik végére, és vennénk
ezek ereddjét. A YF, = 0 feltételbdl €s a kozos metszéspontbol ezek utédn
mar kovetkezne, hogy az egyes erdvektoroknak az x tengelyre merdleges
tengely iranyu vetiileteinek az ered6 forgatonyomatéka nulla lesz, azonban
ezzel nem (szlikségszerlien) egytengelyli hiizas valosulna meg (nyiras is
felléphet). Ezért a targyalashoz a test két végén hatd két, azonos nagysagu,
kozos hatasvonalu, de ellentétes iranyitottsagu erét tételeziink fel, amelyek
hatasvonala mer6leges a vizsgalt keresztmetszetre.

Mivel az alapvet0 szilardsagtani alapfogalmakat a hlizas és a nyomas
igénybevételének segitségével lehet legkonnyebben szemléltetni, ezért eze-
ket ennek a fejezetnek az elején targyaljuk.

2.1. A deformacio

Egy allandod keresztmetszetli (mas szoval prizmatikus) egyenes rad tenge-
lyén a rid egyes keresztmetszeteinek sulypontjait 6sszekotd egyenest ért-
jiik. Legyen egy prizmatikus test hossza £ ! Hasson két szemkozti lapjanak
sulypontjaban, azaz tengelyének két végpontjaban két, azonos nagysagu, de
egymassal ellentétes iranyitottsagt F erd. Tegytik fel, hogy ennek hatasara
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tgy deformalodik, hogy a hossza £, lesz. A hosszvéltozas mértékét meg-
nyulasnak nevezziik:

(17) Al=10,—1,

amelynek értéke huzasnal pozitiv, nyomasnal negativ. Segitségével defini-
alhatunk egy dimenzidmentes aranyszamot, a fajlagos nyulast (engineering
normal strain vagy Cauchy strain):

0=ty AL
b 4

Mivel a deformacio kovetkeztében anyag nem tiint, nem tiinhetett el a testbdl,
a térfogatanak (jo kozelitéssel) allandonak kellett maradnia. Ehhez sziiksé-
ges, hogy a test keresztmetszete a kezdeti d -r6l megvéltozzon: hiizas esetén
lecsokkenjen, nyomas esetén megndvekedjen d -re. Ennek a véltozdsnak
az eredeti keresztmetszethez képesti aranyat szintén egy dimenziémentes
szammal jellemezhetjiik, és (huzas esetén) merdleges vagy keresztmetszeti
kontrakcionak nevezziik:

(18) &=

(19) &, =

A test ezen két, egymasra merdleges iranyu, huzas hatasara torténé méret-
valtozasanak aranyat jellemz6 dimenzidtlan szamot kis gorog niivel jeloljiik,
és Poisson-szamnak' nevezziik:

(20) y=2k

2.2. A normalis fesziiltség

Huzzunk meg egy prizmatikus testet tengelyének két végén két azonos
nagysagu, egymassal ellentétes iranyitottsagti F erdvel (1. abra).

Siméon Denis Poisson (1781-1840) francia matematikus, fizikus, mérnok.
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K
F F
e ——)
q q
F F
1. abra

Legyen a test egy, az F er6re merdleges K keresztmetszetének a feliilete
K. Ekkor fellép egy belsd erérendszer is, amely a deformacioval szemben
biztositja a test valamennyi pontjanak az egyensulyat. Vagjuk félbe a tes-
tet a K keresztmetszetben, és helyettesitsiik az egyik félben fellépd belso
erérendszert egy, a K feliileten megoszld q erérendszerrel. Mivel ennek
az erOrendszernek egyensulyt kell tartania a test végén hat6 F erdvel, ezért

@1 F=gqK

Ezt a K feliileten megoszl0, a keresztmetszetre meréleges erérendszert nor-
malis feszlltségnek (normal stress) (jele: o, mértékegysége N/m?) nevezziik.

A fenti gondolatmenetet a test tetszéleges A feliiletli A keresztmetszetére
is elvégezhetjiik, amibdl kovetkezik, hogy allando keresztmetszetii testben
fellépo fesziiltség allando a test tengelye mentén.

Adott F hiizéerd esetén tetszéleges(en valtozo) keresztmetszetli test
tetszoleges (de F-re merdleges) keresztmetszetére is azonos modon sza-
mithato a fesziiltség nagysaga a keresztmetszet A feliiletének ismeretében:

22 =

22) o=

Ezt az egyenletet nevezziik a hiizas (nyomas) alapegyenletének. Erdekessége,
hogy a szamlald csak a deformaciot 1étrehozd koncentralt eré nagysaga-
tol fiigg, azaz hiaba okozna egy rud két végén két megoszld erérendszer
a deformaciot, csak ezek helyettesitd koncentralt erejének nagysaga sziiksé-
ges a fesziiltség kiszamitasahoz. A nevezdben pedig csak a keresztmetszet
nagysaga szerepel, azaz a 1étrejovo fesziiltség annak alakjatol fiiggetlen,
és (jo kozelitéssel) egyenletesen oszlik meg rajta.
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Lévén vektormennyiség, amikor egy adott testre hat, sziikséges egy
eléjel-konvencid: a htizofesziiltséget pozitivként, a nyomofesziiltséget nega-
tivként vessziik figyelembe.

Ha a rad keresztmetszete nem allandd, hanem példaul egyenletesen
novekszik a 2. dbran lathaté mdodon, akkor a bels6 keresztmetszetekben
a sulypontban fellépd fesziiltség nagyobb, mint a széleken, és ez az eltérés
annal nagyobb, minél nagyobb a {'szdg. Hasonloan, ha példaul egy repedés
miatt egy keresztmetszet hirtelen valtozik, a repedés mentén a fesziiltség
akar tobbszordse is lehet a tobbi, nem sériilt keresztmetszeten felléponek.
A 12. fejezetben targyalando faradasos torések nagy része éppen ilyen
»fesziiltséggyijtd” helyeken kovetkezik be.

2. abra

Huzas hatasara a huzas tengelyében negativ fesziiltségek 1épnek fel (amelyek
a hlizas pozitiv fesziiltségét kompenzaljak), de ezzel parhuzamosan erre
a tengelyre merdlegesen pozitiv fesziiltségek is fellépnek, amelyek a kereszt-
metszeti kontrakcio altal okozott negativ fesziiltségek ellen dolgoznak.

2.3. A csusztatofesziiltség

Htzzunk meg egy prizmatikus testet két szemkozti lapjanak sulypontjaiban
két azonos nagysagu, egymassal ellentétes iranyitottsagu F er6vel (3. abra).
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B
F F
« -»
oy
F T 0 F
- , —
B
[}
3. abra

Legyen a test egy, az F erére mer6leges A keresztmetszetének nagysaga
A, az F er6vel ¢ szoget bezard B keresztmetszetének a feliilete B. Ekkor

A
cos ((p)

A testet a B keresztmetszetben kettévagva egy, a B feliileten megoszlo
erérendszernek kell egyensulyt tartania a test végén fellépd F erével. Ezt
a feliileten megoszl6 erérendszert, azaz a B keresztmetszeten fellépd teljes
fesziiltséget jeloljiik p-val. Ekkor a (21) alapjan igaz, hogy

(24) F=cA=pB

(23) B=

Ebbdl p-t kifejezve és (23)-at behelyettesitve:

F F F
(25) pZEZA—ZZCOS((p):GCOS((p)
eoso)

A 3. abra alapjan bontsuk fel a p vektort a B keresztmetszettel parhuzamos
(t,) és arra meréleges (o) vektorokra. Ekkor, mivel a p és a o, vektorok
altal kozrezart szog ¢, a két merdleges vetiilet kifejezheto:

(26) T, = psin(p)
27 o, =pcos(p)
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A (25) mindkét oldalat beszorozva cosp-vel, majd behelyettesitve (27)-et,
kapjuk:

(28) o, = %cosz (p)=0cos’(¢)

Ezzel kifejeztiik a test F huzderdvel tetszéleges ¢ szoget bezard kereszt-
metszetén hatd normalis fesziiltséget.

A (25) mindkét oldalat sing-vel beszorozva, majd behelyettesitve
(26)-ot, kapjuk:

29 1= %sin((p)cos((p) = %ZSin((p)cos ((p) = %sin(Z(p)

Ezt a keresztmetszet sikjaba eso fesziiltséget csusztatofesziiltségnek (shear
stress) nevezzik.

A 3. abran lathato szerkezet esetében megfelel koordinata-rendszer-
valasztassal a T, vektornak csak egyetlen koordinataja nem nulla. Altalanos
esetben azonban a csusztatofesziiltségnek két komponense van a normal
fesziiltségre merdleges sikban. Ha a ¢ vektor a koordinata-rendszer z ten-
gelyére illeszkedik, akkor a két, az x és az y tengely iranyt T vektorkom-
ponenscket 7. ¢s 7. alakban jeldljiik, azaz az els6 index a tengely, amelyre
mer6leges sikban fekszenek, a masodik a sikon beliili iranyuk.

A tovabbiakban, amikor csak egyszeriien ,,keresztmetszet”-rél van
sz0, akkor a rud tengelyére merdleges keresztmetszetet fogunk alatta érteni.

2.5. A szakitodiagram és a Hooke-torvény

A 4. abran lathato egy ugynevezett szakitodiagram vazlata. Ezt gy vessziik
fel egy konkrét anyagra, hogy egy két oldalan befogott, az adott anyagbdl
késziilt mintat egyre nagyobb erdvel hiizunk, mikdzben mérjik a defor-
maciot és a keresztmetszet valtozasat. Utobbibol a terheld erd ismeretében
szamithato a fesziiltség. Az igy kapott o-t a mért ¢ fliggvényében abrazolva
kapjuk a szakitodiagramot.
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Oyu
Ok
oyL
Op

4. abra

A gorbén tobb jellegzetes pontot figyelhetiink meg, amelyeket a hozzajuk
tartozo fesziiltségértékkel szoktunk jellemezni.

Az elsb a o ,-vel (proportionality) jeldlt ardnyossagi hatar. Ha ennél
az értéknél kisebb fesziiltségekkel hatunk az adott anyagra, akkor az a ter-
helés megsziinése utan visszanyeri eredeti alakjat, azaz nem deformalodik.

Emellett az jellemzé még erre a tartomanyra, amirdl a nevét is kapta,
hogy a fesziiltség és a fajlagos nyulas kozott linearis Osszefiiggés van.
Ezt nevezziik Hooke-torvénynek,®> amelyben az ardnyossagi tényezét
Young-modulusznak? (E) nevezzik:

(30) c=E¢

Mivel ¢ egy dimenzidtlan aranyszam, o mértékegysége pedig N/m?, ezért
E mértékegysége is N/m?.

Akovetkezd jellegzetes fesziiltségérték o, (elastic), amelynél kisebb, de
o,-nél nagyobb fesziiltségértékekre a Hooke-torvény mar nem érvényes, azaz
a 0 és az ¢ kozotti kapcsolat nem linedris, de a test a legfeljebb o, nagysagt
fesziiltségértékek esetében még mindig az eredeti alakjat veszi fel a terhelés
megsziinése utan. A o értéke jellemzéen nagyon kdzel van o,-hez.

Robert Hooke (1635-1703), angol polihisztor, természetfilozoéfus, mérnok.
3 Thomas Young (1773-1829), angol polihisztor, fizikus.
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Az anyag a o, (upper yield) fesziiltségnél, az ugynevezett felsd
folyashataron folyik meg. A o, < o <o, értékek esetében az anyag mar
visszafordithatatlanul deformalodik: a terhelés megsziinése utan nem ere-
deti allapotaba, hanem egy kicsit megnyult alakba tér vissza. Ezt jelolik
a szaggatott ferde vonalak, amelyek a gorbe végéig azonosan jelennek meg,
¢és meredekségiik mindenhol a Young-modulusz.

A megfolyas utan a fesziiltség hirtelen leesik az als6 folyashatar érté-
kére (o) (lower yield), amelyet egy hosszabb-rovidebb platoszakasz kovet.
Ezalatt a fesziiltség nagyon keveset valtozik, utana azonban elkezd6dik
az anyag felkeményedése: a o ¢ (ultimate strength) érték eléréséig Ujra
novekszik a fesziiltség a deformacidval.

Ennél a maximalis értéknél mar nem tud tovabb ndvekedni az anyagban
a fesziiltség: ha noveljiik a deformaciot, elkezdddik a nyakképzddés. Ez azt
jelenti, hogy egy keresztmetszet mérete elkezd csokkenni, és ez pozitiv vissza-
csatolassal gyorsan az anyag szakadasat okozza ebben a keresztmetszetben.

Az eddig elmondott fesziiltségértékek azonban annak felelnek meg,
mintha a keresztmeszet végig alland6 4 értekii lenne (4. ébra, folytonos
vonal). Azonban ez nem igaz, hiszen minél nagyobb a fajlagos nyulas,
annal nagyobb a keresztmetszeti kontrakcio, azaz az aktualis 4 feliilete
a keresztmetszetnek mindig kisebb a kiindulési 4 -nél. Ezzel a valtozassal
korrigalva kapjuk a 4. abran szaggatottal jelzett gorbét, amelybdl azt lat-
juk, hogy a fesziiltség a o ;-nek megfeleld deformacio elérésénél ,,elszall”,
¢és anyakképz6dés helyén, a szakadasi pontban lesz a legnagyobb a fesziilt-
ség értéke kozvetleniil a szakadas elott.

Mindez azonban csak deformalhaté anyagokra igaz. Rideg anyagok
sokkal kisebb deformacio hatasara, illetve az annak megfeleld, tgynevezett
toréfesziiltségnél (o) (brittle) eltdrnek, nem pedig megfolynak. A beton
példaul az 6sszenyomassal ellentétben hiizasra nagyon rosszul terhelhetd,
ezért esetében o, = 0 értékkel szoktak szdmolni.

Kiintegralva a szakitodiagram alatti teriiletet, megkapjuk az adott
deformacio eléréséhez befektetett munkat.

2.6. Méretezés huzasra és nyomasra
Megkiilonboztetiink ugynevezett zomok rudakat és karcsu rudakat. Egy

z0mok rad hossza nagysagrendileg 6sszemérhetd az atmérdjével, mig egy
karcst riid hossza 1ényegesen nagyobb az atméréjénél. Az ezutan targyalando
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tulajdonsagok csak zomok rudakra igazak, karcst rudak esetében ugyanis
a kihajlast is figyelembe kell venni, amivel a 7. fejezetben fogunk részle-
tesebben foglalkozni.

2.6.1. Rudak szimmetridi huzasra és nyomasra

A szemkozti lapjainak sulypontjaiban ellentétes iranyitottsagu, de azonos
nagysagu erokkel huzasra vagy nyomasra terhelt allando keresztmetszetii
egyenes rud egyes keresztmetszeteir6l elmondhatoak a kovetkezé tulaj-
donsagok:
a) A terhelés el6tt sik keresztmetszetek a terhelés hatasara is sikok
maradnak.
b) Méretiik huizaskor cs6kken, nyomaskor nd, de alakjuk az eredetihez
hasonloé marad.
¢) Ha harom keresztmetszet terheletlen allapotban parhuzamos volt,
a terhelés hatasara is parhuzamosak maradnak, és tavolsagaik
aranya nem valtozik.

2.6.2. A megengedett fesziiltség

Méretezésnél az alapvetd cél, hogy az alkatrészek ugy keriiljenek kialaki-
tasra, hogy az igénybevétel soran ne szenvedjenek maradandé alakvaltozast.
Ez azt jelenti, hogy az egyes elemekben fellépd fesziiltségek sose érjék el
az adott elemre jellemzd (a 4. abra szakitodiagramjan bemutatott) rugal-
massagi hatar értékét (o).

Azonban nem mindegy a terhelés modja sem. Egy statikus terhelés,
amikor a fesziiltség allando, kevésbé veszi igénybe az anyagot, mint egy
impulzusszeriien megjelend fesziiltség. Ez alapjan harom esetet kiilonboz-
tetiink meg, amelyeket Wohler-eseteknek neveziink:

1. Statikus (nyugvo) terhelés: az alkatrészt allanddan ugyanaz az erd

terheli. Ilyen példaul egy csillar felfiiggesztésére hato erd.

2. Liiktet6 terhelés: a testre hato erd értéke nullatol egy (adott el6jelit)
maximalis értékig valtozik. Ilyen példaul egy felvono kotelére
hato erd.

3. Leng6 (valtakozo) terhelés: az erd két (azonos vagy ellentétes
eldjelit) szélséérték kozott valtakozik. Ilyen példaul egy dugattyt
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hajtokarja (valtakozé iranyu erd) vagy egy hid feszit6kabelei
(amelyeket a hid onstlya mellett a forgalom is htizasra terhel).

A szerkezetek szamara kifaradas szempontjabdl az 1. eset a legkedvezdbb,
a 3. alegkedvez6tlenebb, amelyekre a 12. fejezetben még részletesen visz-
szatériink.

A biztonsagos méretezés érdekében a folyashatart (rideg anyagoknal
torési szildrdsagot, o -t) egy n biztonsagi tényezdvel osztjak el. Ez az 1-nél
nagyobb szam valdjaban egy szorzat, a kovetkezd tényezokbol allhat:
az anyagtulajdonsagok bizonytalansaga (jellemz6 fesziiltségértékek mérési
hibaja, inhomogenitas, maradékfesziiltségek), a terhelés bizonytalansaga
(nagysag, jelleg — Wohler-esetek), a szamitas bizonytalansaga (modellva-
lasztas, kozelitések) ¢és a biztonsagi szempontok (a meghibasodas veszé-
lyeztet-e életet, vagy nem).

Ennek megfeleléen az ugynevezett megengedett fesziiltség (ameg)
a folyashatar n-ed része:

G1) O g = Oy

n

A méretezés és az ellendrzés célja, hogy a fellépé maximalis fesziiltség ne
1épje tal 0 oGt

Meéretezésnek nevezziik, amikor ismerjiik a terhel6 eré(ke)t, és ez alap-
jan hatarozzuk meg a szerkezet méreteit. Ellenérzésnek nevezziik, amikor
a szerkezet méreteit ismerve leellendrizziik, hogy a fellépd erd(k) altal kel-
tett fesziiltségek kisebbek-e o -nél, illetve hogy mekkora az a legnagyobb
terhelés, ami ezt a feltételt még teljesiti.

Huzas és nyomas esetében tehat a méretezés soran hasznalando dssze-
fliggés a (22) osszefliggésnek a O s felhasznalasaval modositott valtozata:

F
(32) A=——
Gmeg
ellendrzésnél pedig vagy a
! F
(33) 0 ee 20 =—
& A

relaciot vizsgaljuk, vagy a maximalisan megengedhetd terhelderdt, az ugy-
nevezett torerdt (£ ) hatirozzuk meg a keresztmetszet ismeretében, szin-
tén a (22) atrendezésével:
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(34) B =40,

A biztonsag novelésére azonban nem lehet megoldas a tilméretezés, egy-
részt mivel egy talméretezett alkatrész masik alkatrészeket szlikségteleniil
igénybe vehet, valamint az anyagtakarékossag is fontos szempont. Ennek
elkeriilése érdekében szabaly, hogy a maximalis fesziiltség legfeljebb 5%-kal
lehet kisebb a megengedett fesziiltségnél:

(35) Gmeg 2 Gmax 2 0’ 95 O-meg

2.7. A feliileti és a palastnyomas

A nyomo igénybevételnek két specialis esete létezik, amikor is a nyomoerd
nem koncentralt eré, hanem egy feliileten megoszl6 erérendszerként hat.
Azugynevezett feliileti nyomas esetében a nyomoerd egy sik feliileten
oszlik meg. Ez a helyzet példaul alapozasoknal, tartok felfekvési feliileteinek
kialakitasanal stb. Ekkor nem a feliiletre hatd 6ssznyomast, hanem annak
egységnyi feliiletre es6 nagysagat szamoljuk, amely egyenletesen megoszlo
erérendszer esetén éppen a megoszlo erérendszer nagysagaval egyezik meg:

Jaaa
R

(36)

S|

ahol F ateljes nyomoerd. A szamolas soran impliciten feltételezziik, hogy
a nyomas egyenletesen oszlik el a feliileten. Ez azonban csak akkor helyt-
allo, ha egy lefelé szélesedd szerkezet vagy épitmény esetén a kiils6 falnak
a fliggblegessel bezart szoge példaul beton esetében kisebb, mint w/4, vagy
példaul tégla esetében mint 7/3.

A palastnyomds esetében az eré nem vizszintes, hanem gorbiilt feliileten
oszlik meg. Vegyiink egy belsé tulnyomassal terhelt,  sugaru, vékony falt
(azaz az atmér6jéhez képest elhanyagolhatd vastagsagu) csovet (5. abra). Ekkor
a belsé p tilnyomas mindeniitt egy sugarirany megoszlo erérendszerként
hat. Vagjuk szét a csovet egy atmérdje mentén, és tekintsiik az igy kelet-
kezett idomnak egy £ hossztisagu darabjat. A cs6 tengelyébdl a szognél da
sz0Og alatt latszo, a tengely mentén € hosszusagu dA4 feliilet{i cs6elem teriilete

G7) dA=rda’t
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Mivel az eré a nyomas és a feliilet szorzata, a csGelemet terhel helyettesitd
koncentralt er6t kiszamitva, majd a (37)-et behelyettesitve megkapjuk, hogy
acsdelem egy da kozépponti szoggel jellemezhetd darabjara hato terheld erd

(38) E =pdA=prdal

Bontsuk fel ezt az erdt vizszintes €s fiiggbleges irdnyu I/ _és F, kompo-
nensekre. Viszont a rendszer szimmetridja miatt a csédarab masik oldalan a
sz0gnél is hatnia kell egy ugyanekkora abszolut ért¢kli F  erének, amelynek
a vizszintes és fliggdleges komponenseinek abszollt értékei megegyeznek
F -éval:

(39) E_=F

—ox

ésFay:F

—ay

viszont az x iranyt komponensek iranyitottsaga ellentétes, vagyis ezek
vektorialis 6sszege 0, mig az y irany komponensek iranyitottsaga azonos,
vagyis ezek osszeadodnak. Mivel

(40) F, =F, sin(a)

ay

behelyettesitve a (38)-at kapjuk:
41) E”:pdA:prdafsin(a)
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amelyet a teljes a szogtartomanyra, azaz 0-tol n-ig kiintegralva és az atmé-
6t d-vel jelolve kapjuk:

42) F:Fyszrfsin(a)da=pr€jsin(a)da=2pr€=dp£
0 0

ahonnan a fél csore hato palastnyomast kifejezve (a d = 2r helyettesitéssel):

F

(43) P= 70

2.8. Hotagulas

Hoémérséklet-valtozas hatasara a testek mérete megvaltozik. Bar sok esetben
ezt améretvaltozast az adott szerkezet fel tudja venni, nem ritka, hogy rogzitett
volta miatt a test nem tud deformalodni, és ezért htizo- vagy nyomofesziilt-
ségek ébrednek benne. Most csak a linearis hétagulassal foglalkozunk, azaz
ugy tekintiink a test méretvaltozasara, hogy annak a hémérséklet-valtozassal
csak egy dimenzidja valtozik meg mérhetden.

A kezdeti hémérsékletet 7 -lal, a végs6 hdmérsékletet 7,-gyel jeldlve
a hémérséklet-kiilonbség (fiiggetleniil attdl, hogy a hémérsékletet magat
K-ben vagy °C-ban mérjiik, 1évén 1 kelvinnyi hémérséklet-kiilonbség
1 Celsius-foknyi hémérséklet-kiilonbséggel azonos):

(44) AT =T,-T,

A hotagulas alapegyenlete ezen AT hémérséklet-valtozas és a hatasara (egy
iranyban) létrej6vo hosszvaltozas kozotti linedris 0sszefiiggést irja le. Ha
a test hossza a hémérséklet-valtozas hatésara kezdeti £ ért€krol ¢, értékre
valtozik, akkor a (17) alapjan definialhaté megnytlas és a homérséklet-
valtozas kozotti kapcsolat:

(45) Al =a AT

ahol a az Ggynevezett linearis hétagulasi egyiitthatd, mértékegysége 1/K
(vagy 1/°C). Ertéke a legtobb anyagra pozitiv (bar akadnak extrém kivételek,
mint példaul a kobos cirkonium-volframat), azaz hdmérséklet-novekedésre
tagulas az anyagok reakcidja, hémérséklet-csokkenésre 6sszehtizodas.

A (45) egyenlet érvényességi korét két koriilmény korlatozhatja: a értéke
a hOmérséklet valtozasaval valtozhat, valamint a szamolt hosszvaltozasnak
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sokkal kisebbnek kell adodnia a kiindulasi hossznal (azaz Al << £), eltérd
esetben pontosabb szamolast igényel a feladat.

Ismerve o konkrét értékét, a (18)-ba behelyettesitve (45)-6t, megkapjuk
a fajlagos nyulast adott hdmérséklet-valtozas esetén:

(46) e=a AT

amelybdl a (30), a Hooke-torvény alapjan szamolhaté a fellép6 fesziiltség, ha
a test nem tud deformaldodni (példaul fixen be van fogva mindkét oldalan):

@47 oc=—FEaAT

amelyben a negativ eldjel azért sziikséges, mert hdmérséklet-novekedés,
azaz pozitiv AT hatasara nyulas torténik, ez viszont nem pozitiv, hanem
nyomo-, azaz negativ fesziiltséget okoz a testben, ha az ezt a nytlast nem
tudja felvenni. Az ilyenkor fellépd fesziiltségek akar extrém nagyok is
lehetnek, ezért mindig meggondolandoé a fix befogas helyett olyan rogzités
alkalmazasa (amikor lehetséges), hogy a szerkezet szabadon tudjon tagul-
ni-6sszehtizodni, elkeriilendd a befogasban is ¢s a szerkezetben is esetleg
sziikségteleniil fellépd fesziiltségeket.

Hosszu egyenes szerkezeteknél, példaul tavhévezetékekben, mar egészen
kis homérséklet-valtozas is Jmeg-nél nagyobb fesziiltséget eredményezne,
amely vagy toréshez, vagy kihajlashoz (1asd késobb a 7. fejezetben) vezetne,
ezért ezekbe bizonyos tavolsagonként Q alaku részeket, tgynevezett cso-
lirakat épitenck be, amelyek lehet6vé teszik a h6tagulast, és igy eliminaljak
a fesziiltségeket. De a megfelelden stabil rogzités lehetdsége elbtt ezért
hagytak rést a vasuti sinszalak kozott is.



3. Hajlitas

A tiszta huzashoz az egyensulyhoz sziikséges 3 M, = 0 és Y F, = 0 feltételek
mellett az M, = 0 sziikséges feltételt fogalmaztuk meg. Azt gondolhatnank,
hogy tiszta hajlitashoz ezzel szemben az egyenstlyhoz sziikséges két elsé
vektoregyenlet mellett az F, = 0 feltételnek kell teljesiilnie. Ez nagy ska-
lan nézve igaz is, de koncentralt forgatonyomatékot csak eréparral tudunk
létrehozni, amelynek legyen barmilyen kicsi is a karja, az nem lehet nulla.

A tiszta hajlitas tehat ugy valosithaté meg, ha egy rudra a két végén
egy-egy koncentralt forgatonyomatékkal hatunk, és az ezeket megvalosito
eréparok karjai a rad hosszahoz képest elhanyagolhatoak.

y <&
¥ A R . T
G ——r .
< S VA VA VA A e

o
T dp

6. abra

A rad fels6 része a 6. abran lathatéan hiizasra, az alsd része nyomasra van
terhelve, ezek kozott kell tehat lennie egy olyan vizszintes siknak, amelyik
egyikre sincs. Ezt jeloltiik a 6. abran sziirkével, neve semleges réteg. Mivel
azonos F erdkkel terheltiik meg a rudat, az igy fog meghajlani, hogy az egyes
keresztmetszetek olyan, z tengellyel parhuzamos egyenesek koriil fognak
elfordulni, amelyek az egyes keresztmetszeteket olyan két sikidomra oszt-
jak, amelyeknek azonos az elsérendii nyomatéka. Ezekrél az egyenesekrol
pedig tudjuk, hogy a keresztmetszetek sulypontjain mennek at.

Ebbdl két dolog kovetkezik. Az egyik, hogy a semleges réteg pontosan
ez, az egyes sikok z tengellyel parhuzamos, stlyponton atmend szakaszai-
nak dsszessége, az xz sik.



32 MECHANIKA II.

A masik, hogy az egyes keresztmetszetek sulypontjait 6sszekoto egye-
nes, a rud tengelye, amely része a semleges rétegnek, barmilyen tengely
koriil torténd hajlitasra csak deformalodik (meggorbiil), de a hossza nem
valtozik, ezért nevezziik semleges szalnak vagy rugalmas szalnak is. Az el-
nevezés onnan jon, hogy a rudat szamolasaink soran tekinthetjiik nagyon
sok ,,végtelentil vékony”, x tengellyel parhuzamos szal 6sszességének.

3.1. Fesziiltségeloszlas szimmetrikus keresztmetszet esetén

Vegylink tehat egy, a 6/a abra szerinti £ hosszisagt rudat, amelyen kijel6liink
a rud tengelyére merdleges, egymastdl a rad hosszahoz képest ,,végtelen
kicsi” dx tavolsagra levo keresztmetszeteket. Ha a rudat megterheljiik tiszta
hajlitasra, akkor a kezdetben parhuzamos keresztmetszetek sikjai a terhelés
hatasara a 6/b abra szerint dg szoget fognak egymassal bezarni. Azt a z
tengellyel parhuzamos tengelyt, ahol az igy elfordult keresztmetszetek sikjai
metszik egymast, a hajlitas tengelyének nevezziik. Ugyanakkor az egyes
keresztmetszetek az egyes szalakra ugyantigy merélegesek lesznek, mint
a hajlitas eldtt voltak.

A hajlitas tengelyének a rud tengelyétdl valo tavolsagat gorbiileti sugar-
nak (R) nevezziik (7. abra). A tovabbiakban csak olyan esetekkel fogunk
foglalkozni, amikor igaz, hogy a rd tengelyre meréleges dimenzioi (példaul
kor alakt rad esetében az atmérd, d) sokkal kisebbek a gorbiileti sugarnal.

Vizsgaljuk meg, milyen fesziiltségek 1épnek fel ebben a rendszerben! Mivel
a semleges szal hossza nem valtozik meg a hajlitas soran, felirhatjuk ra a
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48) dx=Rde

egyenldséget, hiszen a semleges szal adott dx hosszisagu rudelembe esé
szakaszanak hossza meg kell hogy egyezzen a radelem hosszaval, és a haj-
litott rudban ez a hajlitas tengelye koré irt R sugara kor de koézépponti
sz0ghoz tartozd ivének hosszaval fog megegyezni. Bar a rugalmas szal
korivvel valo helyettesitése szigortian véve csak egy kozelités, ennek jogos
alkalmazasahoz kiilon-kiilon az R > d vagy a dx « ¢ feltétel is elegend6
lenne, de itt mindkett6t feltettiik.

Valasszunk ki egy adott keresztmetszetben egy dA4 nagysagu feliiletele-
met (8. abra), amelynek a semleges rétegtol vett tavolsaga legyen y, amelynek
eléjele nem az y tengely iranyitottsagatol fiigg, hanem forditva: az y tengely
iranyitottsagat valasszuk meg igy, hogy a rad nyomott részében y negativ,
hazott részében pozitiv legyen. Ekkor a szal, amelyhez ez a feliiletelem
tartozik, (az y iranyatdl fliggben) R + y tavolsagra lesz a hajlitas tengelyé-
tol. Ez azt is jelenti, hogy bar a hajlitas el6tt a szal radelembe esé hossza
dx volt, mint minden mas szalnak, a meghajlitott allapotban, bar a hozza
tartozo kdzépponti szog valtozatlanul de, a gorbiileti sugar, amelyhez tar-
tozik, R + y, ezért a hossza is mas lesz:

(49) l,=(Rxy)do
amelybdl a (18) felhasznalasaval a fajlagos nytlas
(R+y)dp—Rdg
E =
Rde

=1

(50)

> =

%)

8. abra
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Mivel feltettiik, hogy a deformacié csak akkora, hogy a Hooke-torvény még
érvényes a rendszerre, ezért annak segitségével kifejezhetjlik a fesziiltséget is:

E
(51 c=Fe=—-7
R

Lathatjuk, hogy a kivalasztott d4 feliiletelemen fellépo fesziiltség nagysaga
adott Young-moduluszt anyagra, adott mértéki (azaz a rid tengelyének adott
R gorbiileti sugaru korivvé deformalddasat eredményezd) hajlitas mellett
egyediil a feliilletelemnek a rad tengelyétdl vett tavolsagatol fligg. A semle-
ges rétegben nulla a fellépd fesziiltség nagysaga (innen a réteg neve), a rad
sz¢&lén maximalis, a kett6 kozott pedig linearisan valtozik y fiiggvényében.

Fontos még megjegyezni, hogy a fellépd fesziiltség valoban csak a sem-
leges rétegtdl valo tavolsagtol fligg: amely szalak azonos iranyban azonos
tavolsagra vannak tdle, azokra azonos nagysagu (¢s iranyu) fesziiltség hat.

Szamitsuk most ki annak a forgatonyomatéknak a nagysagat, amely
adott nagysagu o hajlitofesziiltséget okoz! Megvizsgalva a sz¢éls6 radelemet,
lathatjuk, hogy az egyik oldalan a hajlitast eredményezdé M forgatonyoma-
ték hat, ezzel a ridelem masik oldalan fellép6 o fesziiltség tart egyensulyt.
Ez azonban elmondhatdé minden egyes rudelemre: a két oldalukon végig
ekvivalens forgatonyomatékoknak kell hatniuk.

Mivel y és z iranyt kiilso €s belsd er6k nincsenek a rendszerben, ezért
az ezen iranyt erék dsszegének nulla voltat kifejezé egyenletek semmit-
mondoak, csak az x irdny erék dsszegére van értelme az egyensulyi egyen-
leteket felirni:

(52) ZF,»,XZIGdAZO

Hasonldan, a harom forgatonyomaték-komponens koziil csak a z irdnyt ad
nem trivialis eredményt, hiszen ez az a tengely, amely koriil az x irdnyu
erdk forgatnak:

(53) > M, =[yodd-M=0
i A

Az integrandusban a jobb oldalra hato fesziiltségekbdl szarmazo elemi er6k
nak megfeleléen, amelynek a bal oldalra hat6 forgatonyomatékkal egyfitt
kell nullat adnia. Behelyettesitve az (51) kifejezést, majd a konstans tagokat
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az integralas elé kihozva kapjuk (az y iranyitottsaga, azaz a + eldjel itt mar
nem szamit, hiszen négyzetre emelve biztosan pozitiv szamot kapunk):

E
(54) [y=Ldaa-m=o
J77R

E¢
55 — dA=M
(55) R!y

Az integral értéke fiigg nemcsak a keresztmetszet nagysagatol, hanem annak
alakjatol is. Ez a mennyiség a keresztmetszet ugynevezett mdsodrendii nyo-
matéka (second moment of area vagy area moment of inertia), amelyet I-vel
jeloliink, mértékegysége m*. Ezzel a helyettesitéssel az egyensulyi egyenlet:

M 1
IE R
amelyet (48)-ba behelyettesitve azt kapjuk, hogy alland6 keresztmetszetii rid
esetében a rugalmas szal koriv alakban gorbiil meg tiszta hajlitas hatasara:

(56)

M
(57) dp=——dx
¢ 1E
ahol az [ E szorzatot hajlitomerevségnek nevezzik.

Az (56)-bdl az E/R hanyadost kifejezve ¢s (51)-be behelyettesitve meg-
kapjuk a tiszta hajlitaskor a rid semleges rétegétdl y tavolsagra levé szalak-
ban fellépd fesziiltséget, az ugynevezett Navier-képletet,* amely a hajlitas
alapegyenlete:

(58) M
o =—
7 Y
Ez alapjan a semleges rétegtdl tavolodva a fesziiltség a tavolsaggal line-
arisan novekszik, és minden, a semleges rétegtdl adott y tavolsagra levo
szalban azonos.

A semleges rétegtdl pozitiv iranyban legnagyobb tavolsagban talalhatd
szal, az igynevezett sz¢Els6 szal semleges rétegtdl valo tavolsagat jeloljik
e -gyel, a negativ irdnyban legnagyobb tavolsagra taldlhato szal semleges
rétegtdl valo tavolsagat pedig e,-vel. Ha a rid tiszta hajlitasra van terhelve,

4 Claude-Louis Navier (1785-1836), francia mérndk, fizikus.
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akkor ehhez a két tavolsagértékhez tartozik a fesziiltség két széls6értéke,
amelyeket o -gyel és o -vel jeldliink. Olyan rudakra, amelyeknél a két sz€lsé
szal tavolsaganak azonos az abszolut értéke, azokra e, = e,, amibdl kovet-
kezik, hogy o0, = 0,= 0 _ .
A Navier-képletbe tehat a sz€Is6 szalak e, és e, tdvolsagat behelyette-
sitve y helyére megkaphatjuk a keresztmetszeten fellépd maximalis hajlito-

fesziiltséget:
(59) O, = max(ﬁel;ﬁezj
7 7

Szimmetrikus keresztmetszetet, azaz azt feltételezve, hogy e = ¢, = e,
a maximalis fesziiltséget

M M
(60) o M, M
r 7
alakban kapjuk meg, ahol az I/e hanyadost keresztmetszeti tényezdnek (sec-
tion modulus) nevezzik, és K-val jeloljik:

(61) -1
e

Ezzel a jeloléssel a (60) egyenletben a maximalis fesziiltség:

(62) o =

3.2. Fesziiltségeloszlas aszimmetrikus keresztmetszet
esetén

Tiszta hajlitasra terhelt aszimmetrikus keresztmetszetii rid esetében is
a semleges szal az egyes keresztmetszetek stlypontjain atmend (még ter-
heletlen allapotban az x tengellyel parhuzamos) szal, mivel az erre mer6-
leges keresztmetszetek a sulypontjaikon atmend, z tengellyel parhuzamos
egyenesek koriil fognak elfordulni.

A 9. abran lathato T-tartd sulypontjat és masodrendii nyomatékat meg-
hatarozva a Navier-képlet alapjan meg tudjuk mondani a két sz¢€ls6 szalban
¢bred¢ fesziiltségek nagysagat. Az (58) linearitasabol kovetkezik, hogy mivel
a felsé szl kozelebb van a semleges réteghez, mint az also, ezért o, < o,.
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Az egyenstly azonban nem a maximalis huzo- és a nyomofesziiltségek
egyenl6ségétdl, hanem a helyettesitd koncentralt erdik egyenldségétol fligg.

3,0

4 +0, y
aliiis Fh
S o
v Fay g
R
+—F% @
1,0 0,5

9. abra

A helyettesitd erét a megoszlo o erérendszer és a keresztmetszet szélessé-
gének szorzataként szamithatjuk, az y tengely mentén végigintegralva 0-tol
a sz¢€ls6 szal tavolsagaig:

1,75 175

1,75
63 1 dy= 10,2 |dy= [1-Z2 ydy=0.875
(63) { o(y)dy { (Gzezjy { 750V o,

0,25 1,25 0,25 y 1,25 }/
Ila(y)dy+ J- 30‘(y)dy= I l[ale—]dy+ I 3(01_}1},:

0 0,25 0 1 0,25 1
64
0,25 o 1,25 o
= (122 ydy+ [ 32 ydy=0,6250
! 250 Y OL 250y |

a Navier-képlet linearitasabol pedig kovetkezik, hogy
o, 1,25

65 =
(©5) o, 175

amelybe behelyettesitve (63)-at és (64)-ct valoban azonossaghoz jutunk.
Itt most egy feliilet menti integralast végeztiink: az egyes vizszintes

rétegekre” a keresztmetszet szélességét, azaz z tengely menti méretét (amely-

nek dimenzidja méter) dsszeszoroztuk a fesziiltség mint feliilleten megoszlo
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erérendszer azonos rétegbeli értékével (amelynek dimenzidja N/m?). Ezzel
megkapjuk a 9. dbran lathatd ¢ vonal mentén megoszl6 erérendszert, ame-
lyet az y tengely mentén integralunk, és igy megkapjuk a két helyettesito
koncentralt erdt.

Lathato, hogy ahol a keresztmetszet szélessége megnd, ott a hajlitderd
is ugrasszerlien megnd. Az ilyen tartomanyokra a késébbiekben fokozott
figyelmet fogunk forditani.

3.3. A masodrendii nyomaték

A 3.1. fejezetben bevezettiik a masodrend(i nyomaték fogalmat mint az

(66) I={yda

helyettesitést. Azonban ez annak a problématipusnak megfelelé masod-
rendli nyomaték, mivel mint latni fogjuk, harom hasonldé mennyiséget is
definialunk, amelyek ko6ziil mindig az adott igénybevételnek megfeleldt kell
alkalmazni. Ahogy ott is megjegyeztiik, ez a mennyiség minden kereszt-
metszetre mas, s6t, amint lathatd az integralbol, koordinatarendszer-fiiggd
is, viszont a keresztmetszet terhelésétdl és anyagatdl nem fiigg.

Legyen adott tehat egy sikidom ¢és egy xyz jobbsodrasu koordinata-
rendszer ugy, hogy a sikidom ennek az xy sikjaban fekiidjon. Nevezziik
azt a pontot, ahol a z tengely az xy sikot metszi, O pontnak. Valasszunk ki
egy ,.végteleniil kicsi” d4 feliiletelemet a sikidomon, amelynek x tengelytol
valo tavolsagat x-szel, y tengelyt6l valo tavolsagat y-nal és az O ponttél vald
tavolsagat r-rel jeloljiik. Természetesen euklideszi geometriaban dolgozunk,
ezért igaz a Pitagorasz-tétel:

67) r=\/x2+y2

3.3.1. Tengelyre vett masodrendii nyomaték

Adott tengelyre vett masodrendi nyomatékot gy szamolhatunk, hogy
az egyes feliiletelemek tengelytdl vett tavolsaganak a négyzetét vessziik,
és ezeket az értékeket Osszeintegraljuk a teljes feliiletre.
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Az x tengelyre vett masodrendli nyomaték tehat

(68) I,=[yda

az y tengelyre vett masodrendd nyomaték pedig

(©9) 1,=[xdd

Ezeket az értékeket hasznaljuk a tiszta hajlitas és majd a nyiras szdmolasa-
kor: a semleges rétegnek és az adott keresztmetszetnek a metszete a tengely,
amelyre ezt szamolni kell. Mivel az integrandus egy masodik hatvany, ezért
[ és 1 érteke csak pozitiv lehet.

3.3.2. Centrifugalis masodrendii nyomaték

A feliiletelem két tengelytdl valo tavolsagat kiilon-kiilon sszeszorozva
¢és ezeket a teljes feliiletre 0sszeintegralva kapjuk a centrifugalis masod-
rendtt nyomatékot (product of inertia):

(70) I, =fxydf1
A

Mivel ez az integrandus nem egy négyzet, ezért a d4 felilletelemek x és y
tengelyekhez képesti helyzetétdl fliggden I értéke lehet pozitiv €s negativ is.

3.3.3. Pontra vett (polaris) masodrendii nyomaték

Csavaras szamolasakor lesz szlikségiink az ugynevezett polaris masod-
rendl nyomatékra, ekkor ugyanis, mint latni fogjuk, nincs semleges rétege
a keresztmetszetnek, csak egy semleges szal, amely a csavaras tengelye.
Ha ezt valasztjuk a z tengelynek, akkor az egyetlen pontban metszi az adott
keresztmetszetet: annak kézéppontjaban. Ha a d4 feliiletelemek e ponttol
vett r tavolsaganak négyzetét integraljuk ki a teljes feliiletre, akkor kapjuk
meg a polaris masodrendii nyomatékot:

1) I1,= jrz dA

A
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Ez gyakorlatilag megfelel a z tengelyre vett masodrendii nyomatéknak;
értéke ennek is csak pozitiv lehet.

Emeljiik négyzetre a (67) egyenletet, és integraljuk ki a teljes feliileten!
Mivel 6sszegfliggvény integralasa tagonként elvégezhetd, igy

(72) Irsz=Ix2dA+Iy2dA
A A A
ahova a (68), (69) és (71) definicidkat behelyettesitve kapjuk:
(73) I =1 +1
P x Ty
amely, mivel a koordinata-rendszer az xy sikban szabadon elforgathato,
egy altalanos tétel, miszerint egy sikidom adott pontra vett masodrendii

nyomatéka megegyezik az adott ponton atmend két meréleges tengelyre
vett masodrendli nyomatékok 6sszegével.

3.4. Nevezetes masodrendii nyomatékok

A kovetkezokben kiszamitjuk néhany, a gyakorlatban gyakran hasznalt
keresztmetszet masodrendli nyomatékat.

3.4.1. Teglalap

Adott egy a és b oldalu téglalap. Szamitsuk ki ennek az oldalaira illesz-

kedd tengelyekre, valamint az oldalaival parhuzamos sulyponti tengelyekre
a masodrendil nyomatékait!

3.4.1.1. Téglalap oldalra illeszked6 tengelyre vett masodrendii
nyomatéka

Illeszkedjen az a oldal az x, a b oldal az y tengelyre (10. abra). Az x tengelyre
vett masodrendii nyomaték definicidja a (68) alapjan
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I,=[yda
A

R 1

a

10. abra

Mivel itt a teljes feliilet az ab teriiletl téglalap, az integralast a két mer6-
leges tengely mentén végezziik, eldszor x szerint 0-t6l a-ig, majd y szerint
0-tdl b-ig, azaz a téglalap egyik oldalatdl a masikig.

b a b a b b 37 3
b
1 gatap,« = *dxdy = |y’ |dxedy=| y*[x] dy =« Zdza]_}zﬂ_
e = = [ =Ll el {30 >
ab’®
]téglalap, x = ?

Ebben az esetben természetesen az x és az y szerinti integralas felcserélheto,
elészor y szerint, majd x szerint integralva ugyanerre az eredményre jutunk.

Hasonldéan szamolhatd 1 is, amelynél csak az integrandust kell a (69)
alapjan y?-rél x*-re cserélni:

b a ﬂab
2
(75) [[églalap,y = .[ J.x dx d.y =5
0 0 3
Specialis eset a négyzet, amelyre a = b, igy
4
76 - _a
( ) [négyzet,x - ]négyzet,y - 3 .
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3.4.1.2. Téglalap sulypontra illeszked6 tengelyre vett mésodrendii
nyomatéka

A stlypontra illeszkedd, a oldallal parhuzamos tengelyre vett masodrendii
nyomaték (/ ) kiszamitdsdhoz a koordinéta-rendszer kezd8pontjat el kell tolni
ugy, hogy az x tengely ezzel egybeessen. Ekkor természetesen megvaltoznak
az integralasi hatarok: az y valtozd szerinti integralast —b/2 és +b/2 kozott
végezziik (a sulyponti tengely ilyen tavolsagra van a téglalap két é1étol).

Y

11. abra

Azytengelyt el is tolhatjuk a szimmetria kedvéért a stlypontba, ekkor az x
valtozo szerint —a/2 és +a/2 kozott kell integralni, de maradhat az egyik b
oldalra illeszkedd is, ekkor 0-tol €s a-ig kell integralni.

3 e
Lgan = | | ydedy=[ 5]

(77)

(78) ab®

téglalap, x, sp = 12
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Mindkét koordinatatengelyt a stlypontba eltolva tehat az 1, ezzel analdg
moddon szamithatd, csak az integrandust kell megvaltoztatni a (69) alapjan
Y216l x*-re:

b a
2 2
(79) [(églalap,y, sp = J I xde d_)/ =75

Mivel téglalap keresztmetszet(i rud tiszta hajlitasanal e koriil a tengely koriil
fordulnak el az egyes keresztmetszetek, ezért ebben az esetben ezt kell
a Navier-képletben a masodrendi nyomaték helyére beirni.

Ismét felirva a négyzet mint az a = b specialis esetben az egyik oldallal
parhuzamos stlyponti tengelyre vett masodrendii nyomatékot:

(80) _ a

négyzet, x,sp [négyzet,y, sp = 12

3.4.1.3. Téglalap sulyponti centrifugalis masodrendii nyomatéka

Szamitsuk ki a sulypontra a centrifugalis masodrendi nyomatékat is az a b
oldalu téglalapnak (a 11. abra jel6léseit felhasznalva)! Felirva a (70) definiciot
és integralva az x valtozo szerint —a/2 és +a/2 kozott, az y valtozo szerint
pedig —b/2 és +b/2 kozott kapjuk:

— R

{7} dy=.[y-0dy=0

_“ b
2 2

v b v

2 2 2
(81)]téglalap,xy,sp ::L i x)/d.xd)/: J;?)/.[ ‘xd‘Xd.y: J..)/
2

(82) 0

‘[téglalag Xy, sp =

Az ok, amiért nullat kaptunk, a rendszer szimmetriajabol kovetkezik.
Az integralasi hatarok egymas (—1)-szeresei. Az integrandus (jelen eset-
ben x) elséfoku fiiggvény, amelynek primitiv fiiggvénye masodfoku fligg-
vény, azaz a Newton—Leibniz-tétel alkalmazasakor a fels6 hatar és az also
hatar esetében is minden eldjel pozitiv lesz, igy két azonos szamot vonunk
ki egymasbodl. Az eredmény nem fiigg attol, hogy az x vagy az y szerinti
integralast végezziik el elobb.

A fenti gondolatmenet fliiggetlen a konkrét sikidomtol, ezért altalanossag-
ban is kimondhato: egy adott sikidom centrifugalis masodrendii nyomatéka
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zérus olyan tengelyekre, amelyek koziil legalabb az egyik a sikidom vala-
melyik szimmetriatengelyével esik egybe.

3.4.1.4. Téglalap sulyponti polaris masodrendli nyomatéka

A (73) osszefiiggés felhasznalasaval a téglalap stulyponti polaris masod-
rendii nyomatéka:

2b ab’ oab, ,
(83) ][églalap,p,sp :E+E:E(ﬂ +b )

3.4.2. Korlap

Adott egy R sugaru (D = 2 R) korlap. Vegyiik fel a koordinata-rendsze-
riilnket gy, hogy az origd ennek kozéppontjaban legyen, és szamitsuk ki
amasodrendli nyomatékokat! Az el6z6, 3.4.1.3. alfejezetben elmondottakbdl
kovetkezik, hogy a centrifugalis masodrendii nyomaték nulla.

3.4.2.1. Kérlap poléaris masodrendii nyomatéka

A polaris masodrendli nyomaték kiszamitasahoz osszuk fel a korlapot olyan
kicsi, ,,végteleniil keskeny” korgytriikre, amelyek szélessége dr (12. abra).

|
NI

S
S

D
12. abra

Egy ilyen, a korlap k6zéppontjatdl » tavolsagra levo korgytiri teriilete
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(84) dA=2rnrdr

Itt azt a kozelitést tettiik, hogy a korgytrii kiils6 széle végteleniil kdzel van
a belsd széléhez, ezért mindkettd keriilete 2rm, bar tavolsaguk dr. Mivel
integralni fogunk, ezért a dr — 0 hataratmenet képzésekor ez hatarértékben
teljesiilni is fog.

A (71) alapjan

t & 27R* D

L, :_[Vsz=J.722rndr=2nJ.rsdr: i = T

' 4 0 0 4 32
®) D'n
. =—=
kor,p 32

3.4.2.1. Korlap tengelyre vett masodrendii nyomatéka

Korlap keresztmetszetii rid tiszta hajlitasakor a hajlitas tengelye biztosan
egy atmérd lesz, mivel minden, a stlyponton (azaz a korlap kzéppontjan)
atmend egyenes mint tengely illeszkedik egy atmérdre. Egy ilyen tengelyre
vett masodrendii nyomatékot a (73) alapjan tudjuk legegyszertibben meg-
hatarozni.

Mivel a kor szimmetridja miatt 7 o~ Dseysp 3 (73) alapjan
(86) [kér, p = [ki')r, X, sp + [kény, sp = 2 [kér, X, Sp = 2 ]kér,y, sp

ahonnan (85) alapjan
n R* _ D'

[kiir,x,sp :[kiir,y,sp = 4 64

87)

3.4.3. Korgyrtiri

Adott egy R, és egy R, (R, > R)) sugar(i (D = 2R, d = 2R ) koncentrikus
korokkel hatarolt korgytirti. A koordinata-rendszer origdjat a korgyirii
kozéppontjaban vegyiik fel, és igy szamitsuk ki a masodrendii nyomatéko-
kat! A 3.4.1.3. alfejezetben elmondottakbol kovetkezik, hogy a centrifugalis
masodrendli nyomaték nulla, hiszen nemcsak az egyik, hanem mindkét
koordinatatengely a korgy(irli szimmetriatengelye.
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3.4.3.1. Korgytri polaris masodrendii nyomatéka

A korgytirii polaris masodrendii nyomatékanak kiszamitasa a korlap pola-
ris masodrendii nyomatékanak meghatarozasaval analdg modon torténik,
a kiilonbség minddssze az alsé integralasi hatarban van: az nem 0, hanem
R, (hogy a felsd integraldsi hatdr nem R, hanem R, pusztin jeldlésbeli
kiilonbség, lasd 13. abra).

2n(R; —R!)_(D*-d*)a

=J‘r2dA=Tr22rﬂtdr=27rlj‘2r3dr= 4 %

4 R R

Loayinis

(D4 —d* )JI
(88) Doy =55

y

1 g
Ri Q-ij

D,

S
S

D,
13. abra

o

3.4.3.2. Korgyuru tengelyre vett masodrendii nyomatéka

Mivel, a korlaphoz hasonldan, a korgyuriinek is ekvivalens szimmetria-

tengelye az x és az y tengely, ezért Ltrgyirie = Leorayiniy? amit a (73)-ba be-
helyettesitve kapjuk, hogy
(89) ]kérgyl'jn'i, p = ]kérgyl'irﬁ,x, sp + ‘[kbrgyt'irﬁ,y, sp =2 [kérgyl'irﬁ,x, sp =2 ]kbrgyl'jrﬁ,y, sp

ahonnan a (88) alapjan
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n(R/-R') (D'-d*)n

Srgylirti,x,sp = ]kiirgyﬁrﬁ,y,sp = 4 64

©0) 1y

3.4.4. Haromszog

Szamitsuk ki egy a alapu, m magassagu altalanos haromszog tengelyre vett
masodrendii nyomatékat harom kiilonbozé tengelyre: az oldalra; a sulypontra
illeszkedd, oldallal parhuzamos; valamint a cstcsra illeszkedd, szemkozti
oldallal parhuzamos tengelyekre!

3.4.4.1. Haromszog oldalra illeszkedd tengelyre vett masodrendi
nyomatéka

A haromszog alapjara illeszked6 tengelyre vett masodrendli nyomaték ki-
szamitasahoz a haromszdget bontsuk fel kis, d4 nagysagu feliiletelemekre
a kovetkezoképpen (14. abra).

Y
S
m Xdy '
b
>
X
y %
A = 7
14. abra

Legyen d4 egy olyan ,,trapéz”, amelynek alapjai az a oldallal parhuzamosak,
magassaga pedig dy. Ha az y tengely mentén a felosztast minden hataron tul
finomitjuk, azaz dy — 0, akkor a trapéz két alapjanak hossza ugyanahhoz
az értékhez tart, jeloljiik ezt b-vel. Ekkor a d4 feliiletelem egy ,,téglalappa”
fajul, amelynek teriilete:



48 MECHANIKA II.

1) dA=0bdy

Ha a dA feliiletelem x tengelytdl valo tavolsagat y-nal jeldljik, akkor
az a alapt, m magassagi haromszog hasonld a b alapu, (m — y) magassagi
haromszoghoz (mivel bels6 szogeik megegyeznek, hiszen egy szogiik k6zos,
a masik két szogiik pedig parhuzamos szaru, egészen pontosan egyallasi
szogek). Ebbdl kovetkezik, hogy megfelel oldalaik aranyai azonosak:

a m
92) —=—
b m—y
Innen b-t kifejezve és behelyettesitve (91)-be kapjuk:
a(m—y)
93) da=2""ry,
m

crer

tesitve és az integralt a 0 és m hatarok kozott kiértékelve:

IA,x=fy2dA=Tfa(m_y)dFTyzﬂdy—Tyzﬂdy:ﬂfyzdy—ifde
A 0 m 0 0 m 0 m()
_d|:)/_3:|m i{i:r_ams ¢m4_ﬂm3
3], m| 4] 3 4m 12
©4) =

12

3.4.4.2. Haromszog sulypontra illeszkedd, oldallal parhuzamos
tengelyre vett masodrendii nyomatéka

Tudjuk, hogy a haromszdg sulypontja a cstcs és a szemkozti oldal harma-
danal van, az oldalhoz kdzelebb. Ekkor a haromszog a oldallal parhuzamos
sulyponti tengelye (szintén a haromszdgek hasonlosaga miatt) a magassag
harmadolopontjan megy at (15. abra).
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2m/3

~
m/3 \\\ %
!
y y
7 7
a
15. abra

Az x tengelynek a magassag harmadaval valo eltolasaval természetesen
megvaltozik a (92) alakja:

a_ m _om
(95) b, m_ 2m_
3 7 377
amelybdl b-t kifejezve és (91)-be behelyettesitve dA4-ra kapjuk:
2m
(96) a(===)
-3 "y
3
m

Ezzel a helyettesitéssel elvégezve a (68) integraljat —m/3 és 2m/3 kozott,
megkapjuk a stlyponti tengelyre vett masodrendii nyomatékot:

2

Iey.=[y*dd= dy=2"
(97) Asp,x A.y ﬂ.y m .y 36

99) Iy, . =—o
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3.4.4.3. Haromszog cstcsra illeszkedd, szemkozti oldallal
parhuzamos tengelyre vett masodrendii nyomatéka

Szamitsuk ki egy haromszog masodrendii nyomatékat arra a tengelyre,
amely parhuzamos egy oldalaval, és atmegy az azzal az oldallal szem-
kozti csucson (16. abra).

0
N X
m
y y
Ul A
a
16. abra
A hasonlé haromszogek oldalainak aranyat ebben az esetben az
©9) a_m
b~y

aranyparral tudjuk felirni, amelybdl b-t kifejezve a (91) a kdvetkez6 alakot
veszi fel:

(100) da=""y,
m

Ezt a (68)-ba behelyettesitve és az integralt —m és 0 kozott kiértékelve meg-
kapjuk a haromszog cstcsra illeszkedd, szemkozti oldallal parhuzamos
tengelyre vett masodrendli nyomatékat:

am’

0 —ﬂ)/
101 I, =|y’dAd=| y"—=dy=—
(101) Vi ly _Imy Y=

(102) am
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3.4.4.4. Deré¢kszogli haromszog centrifugalis masodrendl
nyomatéka

Szamitsuk ki a 17. abran lathaté derékszogl haromszog centrifugalis masod-
rendli nyomatékat a megadott tengelyekre.

y

dy

>K

<
<

a

17. abra

Az x tengellyel parhuzamos, dy magassagu ¢és b szélességi dA4 feliiletelem
esetében a b paraméter kifejezése megegyezik a (92) 6sszefiiggéssel. Felirva

crer

m a m a m 27 m 2 2.2
[My:'([J.xydxdyZJ‘[xydxdyz-[y|:%:|ﬂyd}/:.!-){%_;;;zde’z

m( 2 2 2 27" 2 47" 22 2 4
e e A L
27 2w’ 202, 2m’[ 4], 22 2m 4
a’m’
(103) I, = o

A 18. abran lathato derékszogii haromszog megadott tengelyekre vett centri-
fugalis masodrendli nyomatéka esetében csak az x szerinti integralas hatarai
valtoznak meg az el6z6ekhez képest.
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Yy
S
m vy
2
<>
b
S
X
y 2
7 7
a
18. abra
ny

ay
Iq,xy_Jo‘;!‘xdedy_,([ '!xydxdy—z[y[z} dy—!)/(z . +2m2 de_

0

(104) ...

3.5. A Steiner-tétel vagy parhuzamos tengelyek tétele

A gyakorlatban sokszor olyan tengelyekre vett masodrendii nyomatékokra
van sziikkség, amelyek nem talalhatoak meg tablazatokban. Ekkor azon-
ban nem sziikséges az adott sikidomot a kérdéses tengelyhez viszonyitva
paraméterezni €s Gjra elvégezni az integralast. A Steiner-tétel segitségé-
vel barmely tengelyre ki tudjuk szamitani egy adott sikidom masodrendi
nyomatékat, ha egy vele parhuzamos tengelyre mar ismerjiik azt, és a két
tengely tavolsaga és a sikidom feliilete is ismert.

Legyen a sikidom masodrendii nyomatéka a sulypontjan atmend x
tengelyre ismert / . Legyen annak a tengelynek, amelyre a masodrendii nyo-
matékot keressiik, a tavolsaga az x tengelytdl az y tengely mentén . Ekkor
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a sulyponti koordinata-rendszer szerinti y koordinatak a masik tengelyhez
képest y + ¢ alakban transzformalddnak.
Ha a stilyponti tengelyre vett masodrendii nyomatékot a (68) alapjan az

]LSP =Iy2 d4
A

modon szamitjuk, akkor az eltolt tengelyre

(105) I, =[(+n*dd=[(* +2yr+2)dd=[y" dd+21 [ydd+*[dd
A A A A A

Az elsé integral a sulyponti masodrendii nyomaték. A masodik integral egy
elsérendli nyomaték, amely azonban, 1évén sulyponti tengelyre vett elsé-
rendli nyomaték, nulla. A harmadik integral egyszeriien a sikidom feliilete.

(106) I=I_+S, ,+4°

Ha egy sikidom masodrendii nyomatéka ismert egy sulypontjan atmend
tengelyre, akkor barmely masik, ezzel a tengellyel parhuzamos tengelyre
megkapjuk a masodrend(i nyomatékot egy pozitiv szam, a sikidom feliile-
tének ¢s a tengelyek tavolsaga négyzetének a szorzatat hozzaadva.

Mivel a sikidom A feliilete pozitiv szam, a tavolsag pedig a négyze-
ten szerepel, az additiv tag is biztosan pozitiv. Ez azt jelenti, hogy egy
sikidom egymassal parhuzamos tengelyekre vett masodrendii nyomatékai
koziil az a legkisebb, amely a sulyponti tengelyre vonatkozik.

A centrifugalis masodrendii nyomaték esetében a képlet az

(107) I =I__+Auv

xV.sp

alakra modosul, ahol I, sulypontban metsz6dé x és y tengelyekre vett
centrifugalis masodrendii nyomaték; az u tengely parhuzamos az x tengely-
lyel, és téle vett tavolsaga u; a v tengely parhuzamos az y tengellyel, és tole
vett tavolsaga v, és [ az u és v tengelyekre vett centrifugalis masodrendii
nyomaték.

3.5.1. Alkalmazas tetszoleges tengelyre
Ha egy olyan tengelyre ismerjiik az / méasodrend(i nyomatékot, amely nem

megy at a stlyponton, akkor is ki tudjuk szamitani a masodrendi nyoma-
tékot barmely tengelyre (19. abra).
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19. abra

Ha a kérdéses tengely az eredeti tengelynek a stllyponttal ellentétes oldalan
fekszik a tengelytdl 7, tavolsagra, egyszertien hozzdadjuk az At * tagot / -hez,
mivel tavolodunk a sulyponttol, tehat a masodrendi nyomatéknak nénie kell.

Ha a kérdéses tengely a sulypont és az eredeti tengely kozott van
(vagy éppen a stlyponti tengellyel esik egybe) a tengelytdl ¢, tavolsagra,
akkor levonjuk / -bdl az At* tagot, hiszen kdzelediink a sulyponthoz ezért
amasodrend nyomateknak csokkennie kell. Ha azonban a kérdéses tengely
a sulypont ellentétes oldalan fekszik ugy, hogy az eredeti tengely és a stly-
ponti tengely tavolsaga ¢,, a sulyponti tengely ¢s a kérdéses tengely tvolsaga
pedig ¢,, akkor az eredményt két 1épésben kaphatjuk meg. El8szor a suly-
ponti tengelyre vett masodrendi nyomatékot kell kiszamitani ugy, hogy
1 -bél levonjuk az At.> szorzatot, majd ehhez hozzaadjuk az At,* szorzatot,
¢és ezzel kapjuk meg a kérdéses tengelyre vett masodrendi nyomatekot

3.5.2. Alkalmazas korabbi eredményekre

A 3.4, alfejezetben levezetett masodrendii nyomatékok koziil tobbet egysze-
riibben is megkaphatunk, ha a Steiner-tételt alkalmazzuk. Az a és b oldala
téglalap a oldallal parhuzamos sulyponti tengelyére és az a oldalra illesz-
ked6 tengelyére vett masodrendli nyomatékok kozott [azaz a (78) és a (74)
egyenletek kozott] fennall az alabbi Osszefiiggés a tengelyek egymastol
vald b/2 tavolsaga miatt:

ab’ ab’ b\ ab® ab®
(108) Tzltéglalapx=]téglalap:x‘sp+At2 = 12 +Gb(5) = 12 + 4
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Hasonldan igaz a Steiner-tétel a (98)-ban felirt, a hdromszog sulyponti ten-
gelyére szamitott masodrendii nyomaték és a téle m/3 tavolsagra levo oldalra
illeszkedd tengelyre szamolt (94), valamint 2m/3 tavolsagra levo csticsra illesz-
kedé tengelyre vett (102) masodrendli nyomaték kozotti transzformaciora:

am3 m : am3 ammz
109 =7 =1_+47)| = L AR
(109 15 R (3) 36 2 9
am3

(110)

2 3 2
2m] am’ amdm

36 2 9

3.6. Osszetett sikidomok masodrendii nyomatéka

Osszetett sikidomok esetében azok paraméterezése a masodrendii nyomaték
kiszamitasahoz sziikséges integralhoz nagyon hamar elbonyolodik. Eppen
ezért azokat nem igy, hanem egy sokkal egyszeriibb mddon szamoljuk.

3.6.1. Osszetett sikidomok masodrendii nyomatékanak
felbontasa

Tegylik tehat fel, hogy egy A4 teriiletii sikidom harom masik, egy 4,, egy 4,
¢s egy 4, teriiletil sikidomra oszthato:
(111) A=A +A4,+4,

Az egyes teriiletek felirhatok az adott részsikidom feliiletén vett, feliilet
szerinti integrallal:

(112) [da=[dd+ [da+ a4

Az egyenlet mindkét oldalat beszorozva y*-tel (ugyanazzal, hiszen ugyanarra
a tengelyre vessziik a masodrendii nyomatékot minden esetben):

(113) jysz=Iy2dA+J.y2dA+_‘.y2dA

. A L Ay, 4, , .
ésitt az egyes tagok az egyes sikidomok misodrendtl nyomatékaival egyez-
nek meg:



56 MECHANIKA II.

(114) I

x,A

=7

x, A1

+1

x,A2

+ ]JC‘A3

Ha tehat a sikidom, amelynek adott tengelyre vett masodrendli nyomaté-
kara kivancsiak vagyunk, felbonthat6 olyan részsikidomokra, amelyeknek
a masodrendii nyomatékait ismerjiik ugyanarra a tengelyre, a teljes sik-
idom ezek Osszegeként all elé. A részsikidomokra altalaban alkalmazni
kell a Steiner-tételt.

3.6.2. A ,,negativ teriilet”

Ha egy 0sszetett sikidomban egy lyuk van, sokszor nem egyszeriien nehéz
azt véges szamu, mar ismert masodrendii nyomatéku részsikidombol fel-
épiteni, hanem geometriailag lehetetlen. Ilyen példaul egy négyzet, kdzepén
kor alaku lyukkal (20. abra).

T

D

a
20. abra

Azonban, hasonléan az elsérendi nyomaték ilyen sikidomra torténd ki-
szamitasahoz, itt sem kell a sikidomot paraméterezni, majd az integralast
elvégezni, hogy megkapjuk a masodrendii nyomatékot. Ugyanis gy is tekint-
hetiink a lyukra, mint egy negativ teriileti sikidomra, és ennek (negativ)
masodrendii nyomatékat hozzaadva a lyuk nélkiili sikidoméhoz, megkapjuk
a lyukas sikidom masodrendii nyomatékat.

Ha az egyes sikidomoknak ismerjiik az adott tengelyre vett masod-
rendli nyomatékat, egyszeriien (eléjelhelyesen) 6sszeadhatjuk 6ket. De egy
olyan lyuk sem okoz nehézséget, amelynek alakja lefedhet6 tobb, de ismert
masodrend(i nyomatéku sikidommal: ezen kit6lt6 sikidomok adott tengelyre
vett masodrendli nyomatékait adjuk hozza negativ elgjellel a kiindulasi,
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folytonosnak tekintett sikidomhoz (amelynek masodrendii nyomatéka szin-
tén szamolhato tobb részsikidom masodrendi nyomatékanak sszegeként).

A 20. abra példdjanal mind az « oldali négyzet, mind a D atmérdj
korlap masodrend(i nyomatéka ismert a (80) és a (87) alapjan, ezek megfeleld
eldjeles 0sszege adja a teljes sikidom masodrendi nyomatékat:

4 4
(115) AN A
12 32

3.6.3. Alkalmazas korabbi eredményekre

A most bemutatott eredményeket felhasznalhatjuk tovabbi masodrendii
nyomatékok meghatarozasahoz.

A 15. abran lathato haromszognek az y tengelyre vett masodrendi
nyomatékanak meghatarozasahoz felbonthatjuk az altalanos haromszoget
két derékszogii haromszogre a 21. dbran lathatd modon az y tengellyel par-
huzamos magassagvonal segitségével:

y
2m/3 dr2
NE >
”}’1/3> (a+d)/3 X
d
y y
U U
a
21. abra

A ferde vonal, amely az eredeti haromszog jobb also csticsat koti Ossze
a szemkozti oldal felez6pontjaval, a hdromszog egy stlyvonala, amelynek
csucstol tavolabbi harmadolopontjaban talalhatd a haromszog sulypontja.
Mivel a felsé cstics tavolsaga az y tengelytdl d, a felezOponté d/2. Tovabba
mivel a sulyvonal a oldalra vett merdleges vetiilete a — d/2, ennek harmada
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plusz az elébb meghatarozott d/2 érték a sulypontnak az y tengelytdl vett
tavolsaga:

(116) ~2.,d_a d d_a d_a+d
3 23 6 2 3 3 3

Ekkor tekinthetiink az eredeti haromszogre gy is, mint két derékszogii
haromszogbdl alld dsszetett sikidomra, amelyeknek az y tengellyel parhu-
zamos sulyponti tengelyeikre vett masodrendli nyomatékait meghatarozva
és a Steiner-tétel segitségével eltolva az y tengelybe, majd 6sszeadva a kovet-
kez6 eredményt kapjuk:

3 2 3 2
[Ay:m(a—d) +m(a—d)(a—d+dj +md +m_d[ﬁj
’ 36 2 36 2 3

3 2 2
ary g, =dm_amd amd _amG e 3a4+d?)
YTd 4 T 1212

Innen mar csak egy 1épés az y tengellyel parhuzamos stlyponti tengelyre
vett masodrendii nyomaték meghatarozasa, hiszen csak a Steiner-tételt kell
alkalmazni ismét a (116) egyenletben meghatarozott tavolsag felhasznalasa-
val, figyelve arra, hogy most kozelediink a sulyponti tengelyhez, a valtozas
tehat negativ:

I *a’qm azma'+amd2 am(a+d\
SR 4 12 2 3
am a*md amd® am
(18) 1y, = e 36@ —ad+d”)

A (98) és (118) kifejezések ismeretében pedig a (73) 6sszefliggés felhaszna-
lasaval a haromszog stlypontra vett polaris masodrendii nyomatéka azonnal
adodik:

3 3 2 2
19 1, S:am +amiamd+amd am(m . fad+d2)
P 36 36 36 36 36
A (103)—(104) eredmények és a Steiner-tétel segitségével megadhato egy alta-
lanos haromszdg (22. abra) sulyponti centrifugalis masodrendii nyomatéka.
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»i »
2m/3 dr2
>< v
m/3> (a+d)/3 x
d
y y
7 7
a
22. abra

d*m* dmma+d (a—d)m? (a—d)mm a+d
Lyw= _dmmatd - m _d
) 8 2 3 3 24 2 3 3

2
am
(120) e (2d —a)

Az elsé tag a (103) Gsszefliggés alapjan a b alapt derékszogli haromszognek
az x és y, tengelyekre vett centrifugalis masodrend{i nyomatéka, a maso-
dik tag a hozza tartozo Steiner-tag, a harmadik tag a (104) osszefiiggés
alapjan az (a—b) alapt derékszogii haromszognek az x és y, tengelyekre
vett centrifugalis masodrendli nyomatéka, a negyedik tag pedig a hozza
tartozo Steiner-tag.

3.7. Fotengelyek, fo-masodrendii nyomatékok

Egy sikidom végtelen sok tengelyére szamithatjuk ki annak masodrendi
nyomatékat. Ezek k6zo6tt azonban vannak kitiintetett jelentéséggel birdak
aszerint, hogy bizonyos specialis pontokon mennek-e at, vagy hogy milyen
a sikidom f6 iranyaihoz képesti pozicidjuk.
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3.7.1. A masodrendii nyomaték transzformacioja forgatas
hatdsdra

Tegyiik fel, hogy ismerjiikk egy sikidom két, egymasra merdleges x és y
tengelyre vett centrifugalis masodrendi nyomatékanak értékét, és a két ten-
gelyre kiilon-kiilon vett masodrend{i nyomatekot, azaz / -t, [ -et és [ -t.
Hogyan szamithatok ki barmely, az x és y tengelyek metszespon‘g an atmeno
egymasra merdleges u €s v tengelyekre az [, [ és [ értékek [, 1 és I
segitségével, ha az x és az u, valamint az y és a v tengelyek altal kozrezart
sz0g o (23. ébra)?

|

23. abra

Egy dA4 feliiletelem koordinataja az elforgatott koordinata-rendszerben ki-
fejezhetd az eredeti koordinatak és az elforgatas szogének segitségével
(24. abra):

(121) u =xcos(a)+ ysin(e)
(122) v=ycos(ar) - xsin(e)
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24. abra

Felirva az u tengelyre vett masodrendii nyomatékot és behelyettesitve (121)-et:

(123) I = Ivz d4 = I[ycos(a)— xsin(@)]’ d4 =

A

= J.yz cos’ (a)dA —Jnysin(a)cos(a)dA + J.xz sin” (a)dA

=1, cos’(ar)— 1, 2sin(a)cos(a)+ I, sin*(cx)

Felhasznalva a
(124) cos’ ()= % + %cos(Za) és sin’(a)= % - % cos(2ar)
Osszefliggéseket, kapjuk:

I, I s
—_x 4 Ix 2
(125) 1 5 + 5 cos(2ar) — I, sin(2a) + 5 L cos(2a)=

u

I +1, I -1
= *; L+ ”2 X cos(2a)-1,, sin(2a)

Hasonloan kapjuk:

(126) I,=1,cos’(a)+1,2sin(a )cos(a)+lx sinz(a):

I, I, I,
:7 + —cos(Za) . sm(2a)+? —?cos(Za):
] +] I I

2

cos(2a)+ 1, s1n(2a)
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A centrifugalis masodrendi nyomaték az elforgatott koordinata-rendszerben
az eredeti koordinatakkal kifejezve:

(127) —— J.u vd4 = j [x cos(a) +y sin(a)][y cos(ax) — xsin(a)]dA =
. Ixycosz (or)dA - J.xz sin(e)cos(er)d4 + Jyz sin(er)cos(or)dA — J.xysinz (a)dd=

=1, cos’ (a) -1, sin(a)cos(a) +1, sin(a)cos(a) =l sin’ (a) =

=1, cos(2a)+— 5 Y sin(2c)

Osszefoglalva:
I +1, I -1
(128) I, == ; L+ = 5 *cos(2a) -1, sin(2a)
I.+1, I -1,
(129) I, == 5 Lo 5 - cos(2a)+]ly sin(2a)
IX - .
(130) I,= 5 ~sin(2a)+ 1, cos(2c)

3.7.2. A fotengelyek

A (130) alapjan szamolhat6 7  centrifugalis masodrendii nyomaték lehet
pozitiv, negativ és nulla is (1asd 3.3.2. alfejezet). Hatdarozzuk meg azt az
szoget, amelynél éppen az [ = 0 egyenléség all fenn, azaz oldjuk meg az

1 -1 !
(131) I, =——2sin(2a, )+ 1, cos(2a, )=0
uy 2 Xy
egyenletet! Innen
I -1, .
(132) 5 “sin(2e, ) =1, cos(2¢,)
1 =21
(133) sin(2a,) = tg(2at, ) = w

cos(2a,) I -1
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Ennek az egyenletnek o -ra két, egymastol m/ 2-vel kiilsnb6z6 megoldésa van.
Kérdés még, hogy az [ és az [ fiiggvényeknek hol van sz€ls6érteke?
Ennek meghatdrozasaaz [ ésaz [ fiiggvények derivaltfiiggvényei zérushe-
lyeinek a megkeresését jelenti, azaz derivaljuk (128)-at és (129)-et a szerint,
¢és a derivaltfiiggvényt tegyiik egyenlévé 0-val. Azt kapjuk, hogy a
d/

d/
L=0¢és —=0
(134) da da

egyenletek egy (—1)-szeres szorz6tol eltekintve azonosak:

(135) j[; = —(Ix -1, )sin(2a)— 21, cos(2a)=0
(136) % = —(IX -1, )sin(Za) =21, cos(2a) =0

igy elegendd az egyik egyenletet megoldani. A szogfiiggvényeket az egyik
oldalra, a masodrend{i nyomatékokat a masik oldalra rendezve a (133)-mal
azonos alaku megoldast kapunk. Ez azt jelenti, hogy ahol a centrifuga-
lis masodrendli nyomaték nulla, ott az egyik tengelyre vett masodrendii
nyomaté¢knak minimuma, a masiknak pedig (az ellentétes eldjelek miatt)
maximuma van.

Az adott ponton atmend végtelen sok tengely koziil ezt a kettot, ame-
lyekre a masodrendii nyomatéknak szélsdértéke van, az adott ponthoz tar-
tozé fétengelyeknek (principal axis) nevezziik.

Egy sikidom szimmetriatengelye mindig fétengely, és az 6sszes, szim-
metriatengelyre merdleges tengely is fétengely.

3.7.3. A f6-masodrendii nyomatékok

Hatarozzuk meg a fétengelyekre vett masodrendi nyomatékok értékét is!
A (128) egyenletet
I.+1, I1.-1

(137) I — SRR * cos(2a)- 1, sin(2c)

alakra rendezve, majd négyzetre emelve ¢és hozzaadva a (130) egyenlet
négyzetét kapjuk:
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(138) |:1” L ;]":| +1) = |:1"' ;]" cos(Za)—IAJ, sin(Za)] +|:1"' 5 Y sin(2e )+ I, cos(Za):|

Mivel sin®(a) + cos?(a) = 1, a jobb oldalon elvégezve a négyzetre emelést
és kiemelve a megfeleld tagokat, az az alabbi alakra egyszertisodik:

2 2
I, +1, e
(139) {1,,— . } +13v=( 5 J +I,

A bal oldalon a négyzetre emelést elvégezve (és mivel tudjuk, hogy a féten-
gelyekre I =0, ezért ezt a tagot elhagyva) és az egyenletet nulldra rendezve:

L+1\ (I.-1Y
(140) 15—1,,,(1x+1y)+( = j —( = j ~I =0

A két Osszetett négyzetes tagban elvégezve a négyzetre emelést, az 6ssze-
vonasok utan kapjuk:

(141) -1, +1,)+11,-1% =0

Ez egy masodfokt egyenlet / -ra,igyaza=1,b=— (] + [)esc=11 ]2
egyiitthatokat behelyette51tve amasodfokt egyenlet megoldokepletebe I, -ra
kapunk két megoldast:

2
(142) = (r.+1,)+ \/(A- +1,f -al1g,-1) _

2

_vr)x 1l vard, 1 a1, +ar,

2
_ (1,+1) ), -1,F +ar2
2

A szamolasban a (128) egyenlet helyett a (129) egyenletet hasznalva ugyanezt
a két eredményt kapjuk / -re, mivel az eltérd el6jelek a megfeleld helyeken
ugyanolyan el6jelt szorzatot adnak eredménytil:

L+1,7 o, [L-I
(143){1\__ . }um{ .

Mivel sin®(a) + cos?(a) = 1, a jobb oldalon elvégezve a négyzetre emelést
és kiemelve a megfeleld tagokat, az az alabbi alakra egyszertisodik:

. P rr-1, i
=cosa)+ 1, sin(Za)} +{ u 5 =sin2a) + 1, cos(2a):|
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I +1.7T I -1Y
(144) {11,— ’“2 }1 +1j‘,=( *2 yj +ij

ami megegyezik a (139) egyenlettel, innentdl a levezetés megegyezik a (140)—
(142) 1épésekkel. A két fiiggetlen megoldas tehat

I +1)+.. —1)>+4I’

(145) ]l=[ =(x }) (x y) xy
max 2

_ (1, +1y)—1/(1x —1,)’ +4I,
2

amelyeket az adott ponton atmend foétengelyekhez tartozé f6-masodrendii
nyomatékoknak (principal moment of inertia) neveziink, és I -gyel és I -vel
jelolink.

(146) I,=

min

3.7.4. Masodrendii nyomaték tetszoleges tengelyre

Ha egy sikidomnak ismerjiik a fétengelyeit és az ezekre vett /, és [, f6-ma-
sodrendii nyomatékokat, akkor az / -hez tartozé tengellyel ¢ szoget bezard
a tengelyre (és a rd merdleges, azaz az I,-hoz tartozo fétengellyel szintén
@ szoget bezard b tengelyre) vett masodrendii nyomaték értéke is szamolhato.
A (128) és a (129) egyenletekbe / helyére / -et, 1, helyére /-t helyettesitiink
(és feltételezziik, hogy a fétengelyek legalabb egyike egybeesik a sikidom
valamelyik szimmetriatengelyével, ezért [,=1,=0)

(147) I = L+, L-1 cos(2)
2 2
(148) I, = 11;212 - %COS(Z(/))

A jobb oldalak els6 tagjat beszorozzuk 1 = cos*(p) + sin*(p)-vel, a maso-
dik tagokra pedig alkalmazzuk a cos(2¢) = cos*(p) — sin’(p) Osszefiiggést:

-1 ey

sin’ ()

cos’(p) -

(149) 1, = % cos’(p)+ [1;212 sin’(¢p)+

(150) 7, = 4 -12-12 cos’(p)+ d 42-12 sin’(¢)— d 5 2 cos?(¢) + 4 3 25in’(p)
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A megfeleld tagokbol cos?(p)-t és sin?(p)-t kiemelve kapjuk a fétengelyekkel
@ szoget bezard tengelyekre vett masodrendii nyomatékok értékeit a f6-
-masodrendii nyomatékokkal kifejezve:

(151) I, =1,cos*(p)+1,sin*(p)
(152) I, =1, cos’(p)+ 1, sin’(p)

Az ésazl egymashoz képesti aranyatol fiiggéen valtozik a masodrendi
nyomaték nagysaga a ¢ szog fliggvényében (25. abra).

I,
1P L

I
) ? )

N
=L

25. abra

Tudjuk, hogy az egymassal parhuzamos tengelyek koziil mindig arra lesz
a masodrendli nyomaték a legkisebb, amelyik a sikidom sulypontjan megy
at (lasd 3.5. alfejezet), a sulyponton atmend tengelyekre vett masodrendii
nyomatékok koziil pedig az /7 -nek megfeleld fétengelyre vett lesz a mini-
malis. Ez az adott sikidomon atmend Osszes tengelyre vett masodrendii
nyomatékok koziil a legkisebb.

3.8. A masodrendii nyomaték vektoros alakja

A kovetkezOkben a masodrendli nyomaték egy gyakran hasznalt repre-
zentacidjat ismerjik meg, és mutatjuk be ekvivalencigjat az eddigi skalar-
reprezentacioval egy korabban mar levezetett probléma ezen modszerrel
torténdé megoldasan keresztiil.
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3.8.1. A masodrendii nyomatéki matrix

A masodrendii nyomaték tetszéleges tengellyel parhuzamos iranyban valo
meghatarozasahoz célszerii definialni az igynevezett masodrendli nyomatéki
matrixot. Ennek a matrixnak a diagonalis elemei az xy koordinata-rendszerben
az x ¢s az y tengelyre vett masodrendi nyomatékok, az offdiagonalis ele-
mek pedig a megfeleld centrifugalis masodrendii nyomatékok (—1)-szeresei:

I [x _I\y
153 = ’
(153) o=l_;

» y

Harom dimenziéra hasonloan értelmezhet6é a masodrendii nyomatéki mat-
rix, jobbsodrast koordinata-rendszert feltételezve:

1, -I, -I,

(154) L=|\-1, I, I,
-1, -1, I

2y z

Ha ismert egy sikidom adott koordinata-rendszerben vett masodrendii nyo-
matéka, tetszbleges tengelyre meghatarozhatjuk a masodrendii nyomatékot.
Ehhez ismerni kell egy, a kérdéses a tengellyel parhuzamos egységvektor-

crer

(155) I, =ele,

szorzatot, az a tengely iranyu masodrendli nyomatékot kapjuk meg, mig
az e egységvektorra merdleges e, egységvektor felhasznalasaval a centri-
fugalis masodrendi nyomaték (—1)-szeresét kaphatjuk meg:

(156) - Iab = eaIOeb = ebIOea = _]ba

Itt kihasznaltuk az I, matrix szimmetridjat, hogy megmutassuk, hogy mer6-
leges tengelyekhez tartozé masodrendii nyomatékvektorok egymas tenge-
lyére vett vetiiletei egyenléek. Megjegyezziik, de nem bizonyitjuk, hogy
ez az allitas nem mer6leges tengelyekre is igaz.
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3.8.2. A masodrendii nyomaték vektorreprezentacioja

A fenti szamitasok soran kozbensé 1épésként, amikor a masodrendii nyo-
matéki matrixot megszoroztuk az a iranyti egységvektorral (mindegy, hogy
balrdl vagy jobbrdl), egy vektort kaptunk:

(157) 1 =le,

Ezt a vektort az a tengelyhez tartozé masodrendiinyomaték-vektornak nevez-
ziik. Mivel az eredeti (x, y) koordinata-rendszeriinkben az x és az y irdnyu
egységvektorok

158 —1 : —0
(158) ex—oesey—1

ezen tengelyek masodrendiinyomaték-vektorai:

I, -1,
(159) I, = és 1= °
-1, 1,

Az el6z0 alfejezet alapjan mar tudjuk, hogy Iétezik egy olyan tengelypar,
amelyekhez tartozo centrifugalis masodrendii nyomaték nulla. Ezeket nevez-
tiik fétengelyeknek és jeloltiik u-val és v-vel, a hozzajuk tartozé masodrendii
nyomatekokat pedig / -val és [ -vel. Igaz tehat, hogy I =1 =0.Ez vektorosan
azt jelenti, hogy az u tengelyhez tartozé masodrendiinyomaték-vektornak
a v tengelyre vett merdleges vetiilete nulla, és forditva:

(160) - Iuv = euIOev =€ I = evIu = evIOeu = _] = O

u-v i
Képezziik formélisan az I vektort!

(161) Iu = IOeu

Az egységelemmel barmikor lehet szorozni, igy mivel igaz, hogy e *=e e =1,

tovabba mivel a vektor skalarral vald szorzdsanak muivelete kommutativ,
azaz A v=v A, ezért

162 I, =Ie,=1-Te, =eele, =¢,(ele,)=el, =1e

u-u u-u

Felirva csak a masodik ¢s az utolso tag egyenldségét, majd nullara rendezve
¢és matrixegyenletként felirva az egyenletet:
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(163) Ie, -1, =0

1

(164) Lie,~Ele, =(I,~EL)e, =0

[x_]u _[xv COosS 0
- [yr I_v - Iu Sln(wu) 0
ahol ¢ az u tengelynek az x tengellyel bezart szoge, 1asd még (121). A meg-
oldasok a

1.-1, -1

x u Xy

-1, I,-1I,

w

(166) =(1 -1, )(Iy ~1)- 12 =0

egyenlet megoldasaval hatarozhatok meg, ami egy méasodfoku egyenlet / -ra:
2 2
I, -11,-11,+I11 -1 =0
2 2
(167) =1, +1,)1,+(1,1,-12)=0

amelynek a (142) a megoldasa:

, =(1x+1y)i,/(1x—1),)2+41,§,

u 2

Ezzel a vektoros formalizmus hasznalataval is megkaptuk a korabban le-
vezetett eredményiinket.

3.9. Az inerciasugar és a tehetetlenségi ellipszis

A tengelyre vett elsérendli nyomaték meghatarozasanal lattuk, hogy a sik-
idom anyagat a stlypontba ,,siiritve”, azaz a stlypont tengelyt6l valé tavol-
sagat a sikidom teriiletével beszorozva ugyanazt az értéket kapjuk, mint ha
elvégeznénk az integralast a sikidom teljes feliiletére, azaz

(168) S,.=|yda=ay,
A

A masodrendii nyomaték szamitasanal is hasonld a helyzet: a sikidom tel-
jes ,,anyagat” az x tengelytol i, tavolsagra egy vonalba (vagy akar egyetlen
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pontba) ,,stiritve” a teljes feliileten vett integralassal kaphatd eredménnyel
azonos eredményre juthatunk. Azaz a keresztmetszet feliiletének nagysagat
azi mennyiség négyzetével szorozva az adott tengelyre vett masodrendi
nyomatékot kapjuk:

(169) I, =jy2dA=i_§A
A

Azi tavolsagot inerciasugarnak (radius of gyration vagy gyradius) nevez-
ziik, és kiszamitasanak modja az adott tengelyre vett masodrendii nyomaték
ismeretében tehat

(170) i,|= L
A

A négyzetre emelésbol kovetkezik, hogy egy adott tengelynek mindkét

oldalén i tavolsagra van egy-egy olyan tengely, amelyre a (169)-et felirva,

a masodrend{i nyomatékot kapjuk.

Mivel az egy sikidom adott pontjan atmend tengelyekre szamolt masod-
rendli nyomatékoknak a fétengelyeknél van szélséértéke (két maximuma
¢és két minimuma), ezért az inerciasugaraknak is itt lesz két-két szélséértéke,
hiszen a kiszamitasukkor csak az allando A feliilettel osztjuk le a masod-
rendii nyomatékot.

Jeloljiink ki egy sikidomon egy P pontot, majd hatarozzuk meg az dsszes,
ezen a ponton atmend tengelyre az inerciasugarat. Ez megfelel annak, mintha
a(151) és (152) egyenletek mindkét oldalat leosztanank az A teriilettel, és gyo-
kot vonnank mindkét oldalbdl (mivel a két egyenlet megkiilonboztetése
csak a jelolésben nyilvanul meg, azaz ha a két f6-masodrendli nyomatékot
forditva jelolnénk, a masik egyenletet kapnank, itt csak / -ra végezziik el
a szdmolast):

(171) i, =i cos*(¢p)+ i} sin* ()

ahol i =+/(1/4) és i=+(1/4).

A (151)—(152) egyenletek felhasznalasaval impliciten tovabbra is feltettiik,
hogy legalabb az egyik fétengely egybeesik a sikidom valamely szimmetria-
tengelyével, azaz hogy I, = 0. A (171) egyenlet egy ellipszis érintéegyenese
¢és a kozéppontja kozti tavolsag szogfliggését irja le (amely csak a fétenge-
lyek iranyaban egyezik meg az érintési pont és az ellipszis kdzéppontjanak
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tavolsagaval!). Az érintGegyenesek tehat egy ellipszist hataroznak meg
(26. abra), ezt nevezziik tehetetlenségi ellipszisnek (ellipse of inertia). Ha
az u és a v tengelyek a sikidom sulypontjan mennek at, azaz /, és I, a stily-
ponthoz tartozd f6-masodrendi nyomatékok, akkor centralis tehetetlenségi
ellipszisrél beszéliink.

26. abra

A 26. abran jelolt (azaz a tehetetlenségi ellipszis kdzéppontja, az érintési
pont, valamint az elforgatott koordinata-rendszer b tengelye és az érint6-
egyenes metszéspontja altal meghatarozott) haromszogrél megmutathato,
hogy annak T teriiletére igaz az

(172) 1,=2T4

Osszefliggés.

3.10. Méretezés és ellendrzés hajlitasra

Az eddig elmondottak alapjan gyakorlatilag barmilyen keresztmetszet bar-
mely tengelyére meg tudjuk hatdrozni a masodrendii nyomatékot. Példaul
kereskedelmi forgalomban kaphato, kiilonféle szelvényii idomacélok esetében
ennek vagy a K keresztmetszeti tényezonek az értéke a termékleirasokban,
tanusitvanyokban is szerepel a fétengelyekre. A Navier-képlet alkalmazasa-
val tehat egy keresztmetszet barmely pontjara meg tudjuk hatarozni annak
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igénybevételét, ha a rud tiszta hajlitasra van terhelve. Ez az eset akkor all
fenn, ha a hajlitonyomaték a teljes radon allando, ami, mint késobb latni
fogjuk, akkor teljesiil, ha a rad nincs nyirasra is igénybe véve (e két terhelés
Osszetett hatasardl a 9.1. alfejezetben lesz sz0).

Tovabb egyszerisiti a szamolast, ha a rud igénybevétele tigynevezett
egyenes hajlitas, amelyrdl részletesen az egyiranyu dsszetett igénybevételek-
nél, a 8.5. fejezetben lesz sz6. Ez azt jelenti, hogy a hajlitonyomaték-vektor
parhuzamos a keresztmetszet egyik sulyponti fétengelyével, u-val vagy
v-vel. A gyakorlatban ezt a két fétengelyt szokas a koordinata-rendszer y
és z tengelyének felvenni igy, hogy x-szel, a rad tengelyével jobbsodrast
rendszert alkossanak.

Ha a hajlitobnyomatéki vektor irdnya nem esik egybe egyik sulyponti
fétengellyel sem, akkor ferde hajlitasrol beszéliink.

A méretezés soran az ismert igénybevétel és esetleg a meghatarozott
alaku keresztmetszet alapjan hatarozzuk meg a szerkezet méreteit (¢s esetleg
a legcélszerlibb keresztmetszetet) gy, hogy a legnagyobb fellépd fesziiltség
ne Iépje tul az adott tartdra vonatkozo megengedett fesziiltséget (O’meg). Ha
atiszta, egyenes hajlitasra terhelt rud anyaga a hizo- és nyomofesziiltségekre
azonosan viselkedik, akkor a legnagyobb fesziiltségre méreteziink, amely
artd tengelyétdly = =max (e; e,) tavolsagnal Iép fel. A Navier-képletbe azon-
ban nem ezt, hanem a méasodrendli nyomaték ésy_  hanyadosat, a kereszt-
metszeti tényezdt irjuk be, amely, kdvetkezéen az allando keresztmetszetbdl,
az egész tartora allando. A kapott egyenletet atrendezve kapjuk:

173 O =y =Moo
(174) k>Me g
o

meg

ahol K —az Ggynevezett sziikséges keresztmetszeti tényezd, amelynél
az adott tartd keresztmetszeti tényezdje nem lehet kisebb. A tény, hogy
nem Onmagdban a masodrendli nyomaték vagy y_  hatdrozza meg egy
keresztmetszet alkalmassagat, hanem a kett6é hanyadosa, bizonyos mértéki
szabadsagot ad a megfelel6 keresztmetszet kivalasztasaban.

Ellendrzéskor azt vizsgaljuk, hogy a szerkezet elbir-e egy adott terhelést.
Ekkor mind a terhel6 hajlitonyomaték, mind a tartd paraméterei ismertek,
igy a Navier-képlet alapjan szamitott o -r6l csak azt kell megallapitanunk,
hogy kisebb-¢ a megengedett fesziiltségnél.
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M ?
(175) o =, M,
max [ y max K meg

Haigen, az aktualis paraméterek megfeleléek, a tartd elbirja a terhelést, de
ha nem, akkor Gjra kell a szerkezetet tervezni.

3.11. A rugalmas szal differencialegyenlete

Az (56) kifejezés alapjan a tiszta hajlitasra terhelt tarto gorbiileti sugara
allando (vagyis a tartd alakja koriv), és forditottan aranyos a hajlitbnyoma-
tékkal, az aranyossagi tényezo pedig a hajlitomerevség:

L

IE R
Ha azonban a hajlitonyomaték nem allando a teljes tarton, hanem egy M(x)
fliggvény szerint valtozik, akkor a gorbiileti sugar is keresztmetszetrol
keresztmetszetre valtozik. Legyen y a tartonak a tengelyére meréleges el-

mozdulésa az igénybevétel hatasara. Az y(x) fiiggvénnyel leirhato alaku
sikgorbe gorbiileti sugara matematikailag az

1 y"(x)
(176) =% 5
R(x) (1 +y? (x)y
fliggvényalakot koveti. Mivel a gorbiileti sugarra altalaban igaz, hogy R <<¢,
ezért az y(x) gorbének az y’(x) meredeksége mar eleve kicsi, ennek négyzete
pedig mar masodrendiien kicsi, igy elhanyagolhatjuk. Ezzel a (176) egyenlet
jobb oldalanak nevezdje egységgé valik, és az egyenletet atrendezve kapjuk:

(177) Ry"(x)==+1

Ide beirva az (56) reciprokat és atszorozva a hajlitonyomatékkal:
(178) TEy"(x)=+M(x)

Matematikailag akkor tekintjiik a gorbiiletet pozitivnak, ha a gorbe a gra-
vitacios erével ellentétes iranyt y tengely pozitiv iranyabdl nézve konkav.
Ez a helyzet akkor 4ll el8, ha a hajlitonyomaték negativ. igy a (178) alakja

(179) TEy"(x)=—M(x)
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lesz, amelyet a rugalmas szal differencialegyenletének neveziink. Az egyenlet
integralassal kozvetleniil megoldhatd. Az x tengely mentén az integralast
annyi részletben kell elvégezni, ahany szakaszan a tartonak valtozik a ter-
helés vagy a keresztmetszet.

3.11.1. Szabad végeén koncentralt erdvel terhelt befogott tarto
Ha az egyik végén befogott tartora a szabad végén egy koncentralt erdvel

hatunk, a hajlitonyomaték egyenletesen fog valtozni a tarto tengelye men-
tén 0-tol F{-ig, ahogyan azt a statika targykorénél mar lattuk (27. abra).

-F¢
27. dbra
Az igénybevételi abrabol leolvashatd, hogy az M(x) fiiggvény egy egyenes,

amelynek zérushelye £-nél van, tengelymetszete —F¢, igy fol tudjuk irni
az egyenletét is:

(180) M(x)=F(x—1)

Ebbdl a (179) egyenlet alapjan mar felirhato a rugalmas szal differencial-
egyenlete:

(181) TEy"(x)=—M(x)=F((—x)=F(—Fx

Kétszer integralva mindkétszer megjelenik egy-egy integralasi konstans.

2
(182) IE y’(x):Fﬂx—Fx?JrCI
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2 3

(183) ]Ey(x):FE%—F%JrCIerCZ

A C, és C, allandokat a hatéarfeltételek segitségével tudjuk meghatarozni.
A hatarfeltételek azok az x, y(x) szamparok, amelyekrdl biztosan tudjuk,
hogy a fliggvény felveszi, igy konkrét értékiiket a (183)-ba beirva azt ki
kell elégiteniiik. Jelen esetben az egyik ilyen hatarfeltétel abbol kovetkezik,
hogy mivel a tart6 be van fogva az egyik végén, ott nem is tud elmozdulni.
Mivel ez az x = 0 helyen van, igy itt az y érték is 0 lesz:

(184) »(©0)=0

Ezt beirva a (183)-ba kapjuk:
02 03

(185) IE0=F(——-F—+C,0+C,
2 6

ezt rendezve pedig kapjuk az egyik integralasi konstans értékét: C, = 0.
A masik hatarfeltétel szintén a befogas tényébol kovetkezik. Itt, azx =0
helyen ugyanis a tarté nemcsak elmozdulni nem tud, de elfordulni sem.
Eppen ezért jelenik meg egy —F¢ reakcid-hajlitonyomaték a befogasnal,
hogy az ezt a tart6t elforgatni akaro hajlitonyomatékot kompenzalja. A tarto
tehat itt nem tud elfordulni, ami azt jelenti, hogy kozvetleniil a befogasnal
az alakja olyan lesz, mint egy terheletlen tartonak: vizszintes. A befogasnal
a tarto alakjat leird fliggvény pontosan ugy indul, mint akkor indulna, ha
a tarton nem lenne kiils6 terhel erd: nulla meredekséggel. Mivel egy fiigg-
vény meredekségét annak elsé derivaltja adja, igy a masodik hatarfeltételt az

(186) y(0)=0

alakban irhatjuk. Ezeket az értékeket és a C,-re az el6bb kapott értéket be-
helyettesitve a (182) egyenletbe:

02
(187) 1E0:F€07F3+C1
amelyet rendezve a C, integralasi konstansra kapjuk: C, = 0. Ezeket a (183)-ba
behelyettesitve:
2 3

X X
188 IE =F(——-F—
(188) y(x) T

amelyet y-ra rendezve megkapjuk a tart6 alakjat leird fliggvényt:
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(189) y(x) r {fxz_i}

T 21E 3

A két konstans konkrét értékét a (182) egyenletbe hasonloan behelyettesitve
és y’(x)-re rendezve megkapjuk a tarto egyes keresztmetszeteinek szogel-
fordulasait az x, azaz a befogasi ponttdl valo tavolsag fliggvényében. Itt fel-
hasznaljuk, hogy kis szogelfordulasokrol van csak sz6, azaz ¢ << 1, amikor
is tg(p) = ¢. Ezért az els derivalt, amely a tartot leird fiiggvény adott pont-
beli meredekségét adja meg, ami masként kifejezve az adott keresztmetszet
szogelfordulasanak tangense, megegyezik magaval a szogelfordulassal:

F 2
(190) p~tglp)=y'(x)= I{f x— x}

A tartd szabad végének lehajlasat és szogelfordulasat megkapjuk, ha a (189)
¢és (190) egyenletekbe az x = ¢ értéket helyettesitjiik be:

Fl, ] Fo

(191) f(ﬁ)—y(f)—ﬁ[f 3} T
O-L[p L) Fr

(192) co(f)—y(f)—lE{f 2} T

Ezen két utobbi érték egy masik lehetséges kiszamitasi modjara az alak-
valtoztaté munkarol szol6 10. fejezetben még visszatériink.

3.11.2. Koncentralt erovel terhelt kettamaszu tarto
A 28. abran lathato, koncentralt erével terhelt kéttdmaszu tartd szamitasanal

kihasznaljuk annak tiikrszimmetriajat, és ezzel visszavezetjiik az el6z6
alfejezetben megoldott problémara.
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28. abra

Mivel a két kényszer szimmetrikusan helyezkedik el a terhel6 er6hoz képest,
ezért a rajtuk fellépd reakciderdk egyenldk lesznek, és — ebbdl kovetke-
z6en — mindkettd a terheld erd fele lesz: I, = I, = F/2.

Ugyanigy a szimmetriabol kovetkezik, hogy a tartdé szimmetrikusan
fog meghajolni, azaz a két alatamasztasi pontnal az elfordulas sz6gének
abszolut ért€ke (¢,) meg fog egyezni, csak eldjeliik lesz ellentétes. Az egyes
keresztmetszetek szogelfordulasa a tarto kozepe felé szimmetrikusan fog
valtozni: ha az egyik oldalon adott x tavolsagon a megtamasztasnal mér-
het6 pozitiv ¢ értékrdl a ¢ (0 < ¢, < ¢ ) értékre valtozik, akkor a masik
megtamasztastol szintén x tavolsdggal arrébb —¢, lesz a szdgelfordulas
értéke. A tartd kozepénél, mivel az mindkét kényszertdl azonos, £/2 tavol-
sagra van, ugyanannyit (Ag) kell valtozni a szégelfordulasnak a tartd szé-
1énél megfigyelhetékhoz képest. De éppen az egyenld tavolsag miatt egyik
irany sem Kkitiintetett, a két oldalrol szamitott értéknek meg kell egyez-
nie: ¢, + Ap = ¢, — Ap, amibdl kdvetkezik, hogy Ap = ¢, azaz p({/2) = 0.
A tarto kdzepének szogelfordulasa tehat nulla.

Tekintslink most Ggy a szerkezetre, mintha két, £/2 hossz tart6 lenne
anulla szogelfordulasu keresztmetszetnél, azaz a kozepénél befogva, amely
keresztmetszetet vegyiink a koordinata-rendszeriink origéjaul. Ekkor a sza-
bad végeiken egy-egy F/2 nagysagu erd hat rajuk folfele. A két tarto alakja
Osszességében pontosan meg fog egyezni az eredeti kéttamaszu tartd alakjaval.
Tehat ha a (189) és (190) egyenletekbe F helyére F/2-t, € és x helyére pedig
£/2-t irunk, megkapjuk a kozépen F koncentralt erGvel terhelt, £ hosszisaga
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(sz€ls6 keresztmetszeteinél alatamasztott) kéttamasz tarto lehajlasat és szo-
gelforduléasat a kényszereknél:

(193) 2 2)" 3IE  481E

f[fj— mi(g e

(194) w(ﬁj: y(ﬁj: i@ _ e

2 2 2IE  16IE

Természetesen a szerkezet szamithatd a szokasos modon is. Ha az origot
az F er6 tamadaspontjaba vessziik fel, a tartd jobb oldalan a hajlitonyomaték

(195) M. (x)=Lx
2

bal oldalan
(196) MF(X)=—§X
lesz. Felirva a rugalmas szal differencialegyenletét a jobb oldalra:
(197) IEyL(X)?MQ(X):*gx
Kétszer kiintegralva:

, F x’
(198) [Eyﬁ(x):—57+C1
(199) IEyﬁ(x):—gx—63+C1x+C2

Az els6 hatarfeltételnél kihasznaljuk a korabban elmondottakat, hogy a tarto
kozépso keresztmetszete, ahol az F er6 hat, nem fordul el:

(200) ¥,(0)=0
Ezt beirva a (198) egyenletbe:
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2
(201) rE0=E£% ¢,
22

ahonnan C, = 0. A masik hatarfeltétel, hogy az alitimasztasnal a tart6 nem
mozdul el az y iranyban:

(202) y(ﬁj ~0

Ezt a (199) egyenletbe beirva:
2)
(203) IEo__52_+o[f]+cz
2 6 2

Az egyenletet rendezve a masik integralasi konstansra kapjuk: C, = F£3/96.
A két allandot behelyettesitve a (199) egyenletbe, majd rendezve megkapjuk
a rugalmas szal alakjat leird fliiggvényt:

Fx e
204 IE e
(204) y,(x) AT

-Fx Ir
y,x)=

x)= +
12IE  961FE

(205)

Az x helyére 0-t behelyettesitve megkapjuk, hogy a tartd jobb oldali részén
fellép6 erdk hatasara mennyi a tartd kozéppontjanak a lehajlasa:

—-FO* FO FP
206 0)=vy (0)= -
(206) 1.0)=y.0) 12[E+96IE 961 E

Ez azonban csak a jobb oldali rudrész jaruléka. Felirva a bal oldali részre
vonatkozé M_(x) felhasznalasaval a rugalmas szél differencidlegyenletét
és a szamolast elvégezve kapjuk:

re
(207) J0)=y (0)=5—
Igy a teljes lehajlas:
(208) £0)=1,0)+ £, 0)=LL
- < 481E
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azaz ugyanazt kaptuk, mint a szimmetriamegfontolasok alapjan.

Ha az origot a tartd szélére vessziik fel, a tartd kozepétdl balra eso
keresztmetszetekre az F erd mar fog adni jarulékot a hajlitonyomatékhoz
(szemben az F, erdvel, amely sosem ad). A hajlitonyomaték tehat a tartd
kozepétodl balra eso keresztmetszetben két komponensbdl fog 6sszeadodni:
az I, = /2 és az I er6 hajlitonyomaték-jarulékabol.

Ismét ketté kell tehat valasztani a szamolast. El6szor a tartd kdzepé-
t6l jobbra levo keresztmetszetekre irjuk fel a hajlitonyomatéki fliggvényt,
amelyhez jarulékot csak az I erd ad:

(209) M (x)= %(ﬁfx): % 7%

majd a tartd kozepétdl balra levo keresztmetszetekre irjuk fel a hajlitonyo-
matéki fiiggvényt, amelyhez jarulékot az [, és az I erd is ad:

210) M&(x):g(ﬁfx)fo

A szamolasok végeredménye ekkor is a mar kétszer megkapott eredmény lesz.

3.11.3. Teljes hosszan allando nagysagu megoszIlo
erorendszerrel terhelt kéttamaszu tarto

A 29. abran lathato kéttamaszu tartot teljes hosszan egy q egyenletesen
megoszlo erérendszerrel terheljiik meg. Egy, az origdtdl x tavolsagra levo
keresztmetszetére hato hajlitonyomatéknak két komponense van. Az egyik
a terhel6 megoszl6 erérendszerbdl szarmazik, a masik az F reakcioerd-
bol. Mar az elején érdemes tisztazni, hogy a rendszer szimmetriaja miatt
F,=F, =qtl2.

29. abra
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Az origotdl x tavolsagra levé keresztmetszet I, erd altal keltett hajlito-
nyomaték-jaruléka jobbrdl szamolva:

211) M (x)=(0-x)F, =(¢ - x)q?ﬁ

A megoszl6 erérendszernek ebben a keresztmetszetben csak a keresztmetszet-
t6l jobbra levé része ad jarulékot a hajlitonyomatékhoz. Ennek a helyettesité
koncentralt erdje tehat ¢ (€ —x), hatasvonalanak tavolsaga az origotdl pedig
x+(€—x)/2=(( +x)/2. A megoszlo erérendszer hajlitonyomatékjaruléka tehat
N e

) =

212) M, (x)=—q(t—x > 14—

A teljes hajlitonyomatéki fliggvény igy

02 2 2 2
M(x):MF(X)Jqu(x):(g_x)Q_f_qf_x:%_‘I_M_KJFQ

2 2 2 2 2 2
2
qx- qlx
(213) M(x)=1— 1=
()=
Ezt behelyettesitve a rugalmas szal differencialegyenletébe:
" 4
(214) TEY'(x)=-Mx)=L -1
Kétszer kiintegralva:
2 3
(215) ]Ey’(x):q—ﬂx——gx—+Cl:q—gxz—g)c3+C1
22 23 4 6
(216) ]Ey(x):q—gx—3—€£+C x+C _4ls 4 +Cx+C
43 64 7 7 120 24 oo

Az integralasi konstansok meghatarozasahoz sziikséges hatarfeltételek koziil
az els6 abbol kovetkezik, hogy a tartd a megtamasztasnal nem mozdul el
az y tengely iranyaban:

(217) »0)=0
Ezt beirva a (216) egyenletbe:

218) 1£0=2%0~ 9oty Cco+c,
12 24
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Rendezve megkapjuk a C, integralasi konstans értékét: C, = 0. A masik
hatarfeltétel megegyezik az el6z6vel, csak itt a masik kényszerre irjuk fel:

(219) ¥ =0

Ezt is a (216) egyenletbe behelyettesitve:

3 3 3]
@0 150=Lr- Lo 2y |- L sc,
12 24 12 24 24
majd rendezve kapjuk: C, =—¢q £*/24. A konstansokat beirva a (216) és a (215)
egyenletbe és y(x)-re rendezve megkapjuk a tartd alakjat és annak mere-
dekségét leird fliggvényeket:

3 4 3
@2)  ylx)= gt L g x=—1 €x3_x__€_x
12IE~  24IE~  24IE° 12IE 2 2
x> X0
(222 AT 2
) yix) IE 4 6 24

A tart6 kozepének lehajlasat, valamint a végeinek szogelfordulasat meg-
kapjuk, ha behelyettesitiink x helyére a (221) egyenletben £/2-t, a (222)
egyenletben pedig 0-t és £-et — ez utdbbi kettének a szerkezet szimmetridja
miatt egymas (—1)-szeresének kell kijonnie:

€j4 Ll
S Y r— 4 4
(223) f(gJy[ij g[fj [2__2 g =50 5l

2) 121E| \2 2 2 | 12IE 32 384IE

, q(te: 0 ¢ ql’
f: f:— - | ==
R O s

. g (t0*> o ) —qr
0)= o)=—|———|=—
(225) 0(0)='0) ( TR REYTT;



4. Nyiras

Egy, a talajon rogzitett rugalmas kockanak a felsd, 4 teriiletii lapjara has-
sunk azzal parhuzamosan egy V erdvel, azaz nyirjuk el a kockat. Ekkor
az itt fellépo feliileten megoszl6 erérendszer, azaz nyirofesziiltség, amelyet
jeloljiink T,,-nyel,

(226) Ty =7

alakt lesz. Természetesen nem véletleniil jel6ljiik ezt a tipusu fesziiltséget
tauval: mivel a terheld erd, ¢s igy a fellépo fesziiltség is a terhelt kereszt-
metszet sikjaba esik, ezért a T, fesziiltség csusztatofesziiltség. A kocka
a talajon rogzitve van, igy nem tud elmozdulni. Ezért a kockanak az also
lapjan fel kell 1épnie egy szintén = V/4 nagysagu, de a felsé lapon hato
fesziiltséggel ellentétes iranyitottsagu fesziiltségnek. Ez a két fesziiltség
viszont forgatonyomatékot fejt ki a testre, amelynek egyensulyahoz ezért
sziikséges, hogy egy azonos nagysagu, de ellentétes iranyt forgatonyomaték
is hasson ra. Ez (kocka Iévén) a két fiiggdleges oldalon megjelend, ellentétes
iranyitottsagn t fesziiltségek altal valosul meg (30. abra).

/777777777 77777

h

T
30. abra
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Ezt a jelenséget a csusztatofesziiltségek dualitasanak nevezziik. Ennek harom
alaptulajdonsaga van:
1. Ha egy sikban ébred t fesziiltség, akkor a T vektorara merdleges
sikokban is.
2. A 7 fesziiltségekkel parhuzamos sikokban nem ébred 7 fesziiltség.
3. A sikok, amelyekben a T fesziiltségvektorok fekszenek, metszik
egymast; egy metszésvonalhoz tartozd két sikban fekvo két T
vektor koziil vagy mindkettd a metszésvonal felé, vagy mindkettd
attol elfele mutat.

A nyirasra a Hooke-torvénnyel analdg alakt 6sszefliggés irhato fel:
(227) =Gy

ahol G a csusztatd rugalmassagi tényez6 (shear modulus), és y az elnyiro-
das szdge. A Young-modulusz és a cstsztato rugalmassagi tényezo kozott
az alabbi, Poisson-szam segitségével kifejezhetd dsszefiiggés all fenn:

1

(228) T2+

4.1. A tiszta nyiras

Egy egyenes rud adott keresztmetszete tigynevezett tiszta nyirasra van
igénybe véve, ha a keresztmetszettel a rudat két részre bontva a két rad-
részre hato erdk ereddje a keresztmetszet sikjaba esik. Ezt az elrendezést
a gyakorlatban nagyon nehéz megvalositani, mivel az ereddk altalaban nem
fognak pontosan egy sikba esni, ezért a valosagban altalaban a nyiras mel-
lett hajlitasra is igénybe van véve a rad.

Egy elég jo kozelitéssel nyirasnak tekinthetd eset az, amikor olloval
vagunk: miel6tt az olld élei behatolnak az anyagba, a test tiszta nyirasra
van terhelve, mivel az oll6 élei (viszonylag jo kozelitéssel) egy sikba esnek.
Mikor azonban mar behatolt az anyagba az ¢l, a terhel6 er6 két, az élek ferde
feliiletén megoszld erérendszer lesz, amelyek ereddi mar nem esnek egy
sikba, ¢s igy forgatonyomatékot keltd erépart alkotnak (31. abra).
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31. abra

4.2. Méretezés tiszta nyirasra

Mivel a nyirasra igénybe vett keresztmetszetben a rud tengelyére merdleges
fesziiltségek ébrednek, ezért ezek cstusztatofesziiltségek, amelyek nagysaga
a keresztmetszet mentén valtozik. Atlagos értéke azonban (a normalis fesziilt-
ségekhez hasonloan) kifejezhetd a nyirderd nagysaganak és a keresztmetszet
feliiletének a hanyadosaval:

(229) ==

Ez a tiszta nyiras alapegyenlete, amely feltételezi a nyirofesziiltségek egyen-
letes eloszlasat a keresztmetszeten. Ez a feltétel altalaban jo kozelitéssel
teljesiil, példaul nyirasra igénybe vett csapokat, szegecseket, csavarokat
ez alapjan a képlet alapjan méreteznek.

A 32. abran egy egy- és egy kétnyirast szegecset lathatunk, amelyek
nyirasra igénybe vett feliiletét a kis vastag szakasz jeloli.
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V/2
32. abra
Ha a szegecsszar kor keresztmetszet(i, és atmérdje D, akkor az a) esetben
a (229) alapjan az atlagos nyirofesziiltség

_ 2y 2V &V

(230) T4 D ) " D'n
mig a b) esetben
5o 2V 2 4V

mivel az erd kétszer akkora feliileten oszlik meg.

Har<z . akkor a szegecskotés megfeleld, ahol Toeg & megengedett
fesziiltség. Ennek értéke a kiilonféle anyagokra megtalalhato tablazatokban.
Altalaban (de nem minden esetben) elmondhaté, hogy egy adott anyagra
Teg ~ (0,6 .. 0,8) 0o rideg anyagoknal példaul T = 0,

meg’



5. Csavaras

Ebben a fejezetben kor és korgylrli keresztmetszetii tartok csavarasaval
foglalkozunk.

Ha egy allando keresztmetszetii tartot mindkét végén azonos nagysag,
de ellentétes irany1, a tartd tengelyébe es6 forgatonyomatékkal terheliink,
akkor a tarto igénybevétele tiszta csavaras. A forgatonyomatékot altalaban
egy erOpar alkalmazasaval valositjuk meg. Jeloljiik az er6par alapjat F-fel,
karjat k-val. Az erépar forgatonyomatékat T-vel jeloljiik, és csavaronyo-
matéknak (forsion) nevezziik. Nagysaga a forgatonyomaték nagysaganak
ismert képlete alapjan szamithato:

(232) T=Fk

Iranya meréleges az elcsavarod6 keresztmetszetre, iranyitottsaga pedig
a jobbkéz-szabaly (illet6leg a vektorialis szorzas konkrét elvégzése) alap-
jan hatarozhatd meg (33. abra).

33. abra

Az alkalmazott forgatonyomatékokat kelté két Fk er6parbdl lathatjuk, hogy
az erok az elcsavarodo keresztmetszetek sikjaba esnek, tehat a fellép6 csava-
rofesziiltség (t_ ) cstsztatofesziiltség lesz. Ekkor az egész tartd egyenletesen
van igénybe véve csavarasra, fiiggetleniil annak hosszatol. A csavaras soran
atartd egyes, az x tengelyre mint kzépvonalra merdleges, egymassal parhu-
zamos keresztmetszetei egymashoz képest elfordulnak. Az elfordulas szoge
egymastdl azonos tavolsagokra levé keresztmetszetekre azonos, és az egyes
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keresztmetszetek alakja sem valtozik. Tehat mig a csavaronyomaték nagysaga
allando a tarton annak a két er6par kozti teljes tartomanyaban, fiiggetle-
niil annak hosszatol, az elcsavarodas mértéke mar fliggni fog az eréparok
egymastol vett tavolsagatol.

5.1. Elcsavarodas Kis szogek esetén
A fellép6 fesziiltségek vizsgalatahoz tekintsiik az ¢ hosszusagu, R sugara

tarto egy dx hosszlisagl darabjanak (dx << 1) egy d¢ szoggel (dp << 1) valo
elcsavarodasat (34. abra).

A B

34. abra

Rogzitsiik a koordinata-rendszeriinket a tartd egyik végéhez (A kereszt-
metszet). Az a szOg tehat, amellyel a tartd masik vége (a B keresztmetszet)
elcsavarodik, dg. Legyen a P pont az A keresztmetszeten, annak kdzepé-
tol r tavolsagra. Hasonloan, legyen a Q pont a B keresztmetszeten, annak
kozepétdl r tavolsagra ugy, hogy a PQ szakasz az elcsavaratlan allapotban
az x tengellyel parhuzamos legyen. Ekkor a Q pont a csavaras hatasara egy
r sugart koriven r dg tavolsagot mozdul el, a Q’ pontba:

(233) QQ'=rdy

amelyre igaz, hogy r dp << ¢{. Jeldljiikk a QPQ’ szdget y-val. Mivel dp << 1
és igy rdp << ¢, a QQ’ koriv kozelithetd egy szakasszal, ezzel

(234) QQ'=ypdx

A (233) és (234) egyenletek bal oldalai megegyeznek, igaz tehat a jobb
oldalaik egyenldsége is, azaz
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(235) rdp =ydx

Ebbdl kifejezve a B keresztmetszet szogelfordulasat, kapjuk:
de

236 =r—

236) r=ro

Behelyettesitve a (227) egyenletet:
. . do
(237) r=Gy=Gr-=-
dx

Mivel a G dg/dx kifejezés konstans egy adott csavarasra (G anyagi allando,
az egymastol azonos tavolsagokra levo keresztmetszetek szogelfordulasairdl
pedig feltettiik, hogy azonosak), ezért azt kapjuk, hogy a csavardfesziiltség
a sugarral linearisan ndvekszik ugy, hogy a tartdo kdzépvonalaban nulla.
Ez utdbbi intuitivan is kikovetkeztethetd: ha egy egyenest onmaga koriil
»elcsavarunk”, akkor az egyes pontok 6énmaguk koriil ,,forognak”, azaz
az egyenes maga nem valtozik meg.

Vizsgaljunk most egy infinitezimalisan kicsi, dr szélességii, a kereszt-
metszet kozéppontjatol r tavolsagra levé korgytirti alaka tartomanyt. Hasson
a keresztmetszetre egy T csavaronyomaték, amelynek hatasara a kereszt-
metszet elcsavarodasa legyen dp. A korgytliri alaku tartomany ezen de
kozépponti szoghoz tartozo feliiletelemét jeldljitkk d4-val (lasd 35. abra).

Z
dA
R
dr

y
do

y y

7

D
35. abra

Ekkor a kiils6 T csavaronyomatékkal a teljes keresztmetszeten ébredd 6ssz-
csavarofesziiltség forgatonyomatéka tart egyensulyt:
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(238) T:J.rrdA

A

A dA feliiletelem teriilete kifejezhet6 a korgytra alaka tartomany dr szé-
lességének és a dp kozépponti szoghoz tartozd r de hosszisagu ivének
szorzataként (mivel dp << 1, ezért a koriv kozelithetd szakasszal):

(239) dA=rdp dr

Ezt behelyettesitve a (238) egyenletbe:
2R

(240) T=[[rerdrde
00

Mivel a sz0g szerinti integralastol semmi mas nem fiigg, az kiemelhetd
és kiilon elvégezheto:

2 R R
(241) T= J-d(DJ.I”ZTdI’ZZTEJ-I"ZZ'dV
0 0 0

Behelyettesitve a (237) egyenletben kapott eredményt:

R
4) r=22frGrar
A dx

A G dg/dx tényezok konstansok, ezért kihozhatok az integral elé:
de T 3
T=2nG—|r’dr
(243) o !
Vegyiik észre, hogy a2 1| 1 dr kifejezés a 3.4.2.1. alfejezet és a (85) alapjan
nem mas, mint a kor polaris masodrendii nyomatéka. Ha az integralas also

hatdra nem 0, hanem valamilyen R < R érték, akkor az a korgyftir(i pola-
ris masodrendli nyomatékat adja eredményiil. Ezt behelyettesitve kapjuk:

do
(244) r :IpGg
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ahol az el6bb elmondottak alapjan az I vagy a korlapra, vagy a korgytrire
vonatkozo érték. Kifejezve (244)-b6l a de/dx derivaltat, majd visszairva
a (237) egyenletbe:

dp T

(245) dx - [pG

(246) Ly
Ip

A legnagyobb csavarofesziiltség tehat a keresztmetszet szélén Iép fel. Vagyis
ugyanazt latjuk, mint a hajlitofesziiltségnél, amelynek maximuma a széls6
szalnal volt, hiszen itt is a keresztmetszet k6zEéppontjatol a legnagyobb tavol-
sagra ébred a legnagyobb fesziiltség:

(247) r ===

A hajlitashoz hasonloan bevezetve az analog K polaris keresztmetszeti
tényez6t, a maximalis csavarofesziiltség:

(248) K =

(249) r o=

Mivel nem vektoros alakban dolgoztunk, a (238) egyenletrél még azt is el
kell mondani, hogy a kiilsé T csavaronyomatékkal a teljes keresztmetszeten
¢bredo 0ssz-csavarofesziiltség forgatonyomatéka csak akkor tud egyensulyt
tartani, ha nemcsak nagysaga azonos vele (amit az elébbiekben szamoltunk
ki), hanem irdnya is ellentétes vele. Ez azt jelenti, hogy a keresztmetszetben
csavaras hatasara fellép6 csavarofesziiltségek mindig ellentétes iranyuak
a T csavaronyomatékkal (36. abra).
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36. abra

Hatarozzuk meg egy tarto elcsavarodasat adott csavaronyomaték hatasara.
Legyen a tarto hossza £. A (245) egyenlet mindkét oldalat beszorozva dx-szel
¢és mindkét oldalt integralva:

T
250) p=[dp= I—dX‘—fdx:ﬁf

p

T/

(251) ¢ = IP—G

Az IpG szorzatot, az I E hajlitdbmerevséggel analdog modon, csavaromerev-
ségnek nevezziik.

5.2. Méretezés és ellenorzés

Mas egyszerii igénybevételekhez hasonldan csavarasra is gy méreteziink,

hogy a tartoban fellépé maximalis csavarofesziiltség, 7, ne legyen nagyobb

a tart6 anyagara megengedett maximalis csavardfesziiltségnél, ¢ -nél:
meg

1

(252) Tmax = Z-meg

A csavarasra megengedett cstusztatofesziiltség altalaban valamivel kisebb,
mint a nyirasra megengedett csusztatofesziiltség. Szivos anyagokra a meg-
engedett huzofesziiltség és csavardfesziiltség aranya
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(253) T

csavard, meg

& 075 8O-hl'lz('),mc:g

A (247) és (252) egyenletek alapjan meghatarozhatjuk kor keresztmetszetii
tartokra azok minimalis atmérdjét. Ezutan ellendrzésképpen még meg kell
vizsgalnunk, hogy a (251) alapjan szamolhato ¢ elcsavarodasi szog nagysaga
amegadott értéknél kisebb-e. Tengelyek esetében ennek folydométerenkénti
értéke példaul nem lehet nagyobb, mint 0,25°.



Vakat oldal



6. Fesziiltségallapot abrazolasa

Miutan attekintettiik, hogy milyen tipust fesziiltségek 1épnek fel az egyes
igénybevételek hatasara, ismerkedjiink meg ezek grafikus abrazolasanak
lehetéségével Ehhez az adott test egy P pontj anak alakvéltozését és fesziilt-
a P pontot reprezentalo »kiskockat” vesziink alapul, amelynek élei parhu-
zamosak a jobbsodrast koordinata-rendszer éleivel.

6.1. Alakvaltozasi tenzor

¢s¢_fajlagosnyulds-értekekkel, a tengelyekre merdlegesenay = =V yv = yzV
¢sy, = 7., elnyirodasi szogekkel jellemezhetjik (termeszetesen nem mind
kiilénbozik sziikségszeriien nullatol tetszoleges igénybevétel esetén). Ezeket
az alabbi médon egy 3x3-as matrixba rendezve megkapjuk az adott fesziilt-
ségek hatasara a vizsgalt P pontban 1étrejovoé deformaciot jellemz6 ugy-
nevezett alakvaltozasi matrixot:

P
X 27/xy 27/YZ

(254) A =|L 5 L
P Zyv,x y 2}/}2

1 1 .
2 27/2’V ° ]

amely az adott xyz jobbsodrast koordinata-rendszerben minden informaciot
tartalmaz az adott P pont alakvaltozasi allapotarol. Masik, x’y’z” koordi-
nata-rendszerben természetesen ugyanannak a P pontnak az alakvaltozasi
allapotat leiré A, matrix elemeinek (altaldban) mas lesz a konkrét értéke.
Az alakvaltozasi matrix az igynevezett alakvaltozasi vektorokbol mint
komponensekbdl allo vektor. Az x, y és z iranyu alakvaltozasi vektor:
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1 1 1 .
(255) o, = _yyx =|:gx _yxy _7/x2:| =0,

1 1 .
(256) o, = & Z[EM &y 57’4 =a,

(257) az: _7/}2 :[_yzx _yzy gzi| =“Z

amelyekbdl tehat felépithet6 az alakvaltozasi matrix.

*

* *
o, o
* * [k *
(258) A, =la, :[ux a, uz]: a, :[(zA o, az] =A;
* *
0“2 (IZ

Ha az adott xyz koordinata-rendszerben az x, y és z iranyu egységvek-
torokat rendre i-vel, j-vel és k-val jeldljiik, azaz i = [1; 0; 0], j = [0; 1; 0]
és k=10; 0; 1], az alakvaltozasi matrix még egy tovabbi modon is felirhato.
Képezziik az alakvaltozasi vektorok és a megfelelé egységvektorok diadi-
kus szorzatat, és az igy kapott 3x3-as matrixokat (amelyeknek mindig csak
egy sora vagy egy oszlopa nem nulla, az, ahol az egységvektor ,,1” eleme
szerepel) adjuk Gssze:
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259)  A,=a,0i +a,0f +a ok =ica, +joa, +koa, = A,

Az alakvaltozasi matrix szemléltetheté a koordinata-rendszerben is gy,
hogy az A, matrix egyes elemeinek értékeit a 37. dbra szerint vektorokként
abrazoljuk.

37. abra

6.1.1. Alakvaltozasi allapot tetszoleges tengely iranyaban

Az A, matrix, ¢s igy az @, a ¢s a_ vektorok ismeretében a P pont alak-
valtozasa tetszoleges tengely iranyaban felirhatd, ehhez mindossze az adott
tengely iranyaba mutato egységvektorra van szilikség. Legyen ez az m egy-
ségvektor az A, koordinata-rendszerében: m" = [m; m,; m.], amelyre igaz,
hogy |m| = (m+m+m2)=1. Az m iranyu alakvaltozas vektora az alak-
valtozasi tenzor matrixanak ¢és az m egységvektornak a szorzataként all el6:
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ml
m,
m;
& l l e.m +l m +l m
X 2}/xv 27/xz x0T 2}/,\}’ 2 27/,\‘2 3
1 1 1 1
o, =A, m= 57”{ g, E;fyz Eywm1+gym2+5;/y_,m3
1 1 1 1
E;/zx E}/zy €, E}/zx’nl+5yzjrm2+gzm3
&.m +17/ m +17/ m
M T 2 TS s
1 2 % "
(260) o, =A,m= Ey}wm1+£},m2+57/}zm3 =|a,,

1
Eyzxml +Eyzym2 +gzm3

Ebbél meghatarozhat6 az m irdnyt fajlagos nytilds mértéke az o, €s az m
skalaris szorzataként:

* *
gm :umm =m um = [aml amZ amS] [amlml + amZmZ + amSmS]

J— kd —
(261) En o, m=a, m +a,,m, +a,m,

Osszefoglalva tehat, a fajlagos nyulds ugy hatarozhaté meg egy adott m
egységvektor iranyaban, ha az alakvaltozasi tenzort ezzel az egységvektorral
balrdl és jobbrol is 6sszeszorozzuk:

(262) g, =m A,m
A (261) egyenlet mindkét oldalat beszorozva m’-gal és kihasznalva, hogy
m egységvektor volta miatt mm”* = 1:

(263) £,m =a,
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(264) E,m=0,

Két egységvektor (példaul m és n) altal meghatarozott sikban az elnyirddas
szOge az el6bb bemutatottal analdog moédon szamithatd ki azzal a kiilonbség-
gel, hogy az alakvaltozasi tenzort egyik oldalrol az egyik, a masik oldalrél
a masik egységvektorral kell megszorozni. Az A, matrix szimmetrikus
volta miatt nemcsak a szorzas sorrendje 1ényegtelen, hanem hogy melyik
vektorral melyik oldalrél szorozzuk az alakvaltozasi matrixot:

(265) Y =M Apn=n"A,m=y,_

A szamolas visszafele is mikodik. Azaz ismerve egy iranyban a fajlagos
nyulas értékét, és ez az irany az a egységvektorral mint iranyvektorral
jellemezhet6, amely az xyz koordinata-rendszerben az i, j és k egységvek-
torok linearis kombinaciojaként felirhato, akkor az a egységvektor kompo-
nenseit és a fajlagos nytlas értékét beirva a (261) egyenletbe kapunk egy
haromismeretlenes egyenletet. Ha még két iranyban (példaul egy b és egy
¢ egységvektorral mint iranyvektorral jellemezhetd iranyban) ismerjik
a fajlagos nyulas értékét, egy harom egyenletbdl allo haromismeretlenes
egyenletrendszert kapunk, amelyet megoldva megkapjuk az alakvaltozasi
tenzor matrixat az xyz koordinata-rendszerben.

6.1.2. Alakvaltozasi foiranyok, fonyuldasok

Felmeriil a kérdés, hogy létezik-e olyan koordinata-rendszer, amelyben
az adott alakvaltozasi allapotot reprezentald alakvaltozasi matrixnak csak
a féatlojaban vannak nemnulla elemek?

A probléma megoldasanak matematikai neve fétengely-transzformacio,
amikor egy tenzor ismert koordinata-rendszerbeli matrixreprezentaciojarol
egy olyan koordinata-rendszerbeli matrixreprezentaciora tériink at, amely-
ben a matrix offdiagonalis elemei nullak.

Ehhez el6szor meg kell hatarozni a matrix sajatértékeit, amelybdl
egy 3x3-as matrixnak 3 van (amelyek azonban eshetnek egybe). Ez ugy
torténik, hogy az eredeti matrixbol kivonjuk az egységmatrix ¢ -szeresét,
a kiilonbségmatrix determinansat egyenlové tessziik nullaval, és megoldjuk
az egyenletet. A harom kapott megoldas ¢ -re a matrix harom sajatértéke.

(266) det(A, —£E)=0
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E.—¢ ly L
x i 2 xy 2 Xz
1 1
(267) 57)“ &, —&; Eyyz =0
1
— E, —¢&
27/zx 27@ : &

A kapott egyenlet egyes tagjait & hatvanyai szerint csoportositva, a kobos
tag egyiitthatojaval leosztva és a négyzetes, a linearis ¢és a nulladrendii tag
egyiitthatojat rendre 4 -gyel, 4 -vel és 4 -mal jeldlve:

3 2
(268) e Az —die =A,=0
ahol 4, A, és A, a fesziiltségi tenzor ugynevezett skalarinvaridnsai:
(269) AI:€X+€y+€Z
_ L, 2, 2
(270) AH_8x8y+gxgz+8ygz_Z yw+yn+y)z
(271) Ay =detA,

A (268) egyenletet megoldva ¢ -re a harom kapott ért€k az A, matrix harom
sajatértéke, amelyeket nagysag szerint indexeliink, és az adott alakvaltozasi
allapot fonyulasainak neveziink:

272) & >e,>¢,

Ezekkel az alakvaltozasi matrix:

g 0 0
(273) AP =10 ¢ O
0 0 g

A fényulasok ismeretében tetszéleges, az x, az y és a z tengelyekkel a, f
és y szoget bezaro, v iranyvektorral jellemezhet6 tengely mentén kifejezhetd
az alakvaltozasi vektor:



FESZULTSEGALLAPOT ABRAZOLASA 101

(274) a, = slvcos(a)+ 82vcos(ﬂ) + 83VCOS(}/):

=q, cos(a)+ a, cos(ﬂ)+ o, COS(V)

ahol @, = ¢ v, kihaszndlva a (263)—(264) 6sszefiiggéseket.

Barmely alakvaltozasi allapot matrixa felirhato két tenzor 6sszegeként:
az egyik egy, a térfogat megvaltozasaval jaro, minden irdnyban azonos ¢
nagysagu gombszimmetrikus nyulast ir le, mig a masik csak szogvaltozaso-
kat tartalmaz, térfogatvaltozast nem. Az elsét gombtenzornak, a masodikat
deviacids tenzornak nevezziik. A gémbtenzor matrixa:

g 00
(275) A =0 g O
0 0 g

Egy altalanos alakvaltozasi matrix felbontasa:
(276) A=A +A,

6.2. Fesziiltségtenzor

Tegyiik fel, hogy egy P pontra hatnak normalis és csusztatofesziiltségek.
Ezek altalanos esetben o, o, és o, valamint (a cstisztatofesziiltségek duali-
tasamiatt) 7 =7 .7 =7 &7 =1 . Azalakvaltozisi tenzor matrixahoz
hasonlé modon ezeket az értékeket egy 3x3-as matrixba rendezve megkapjuk
az adott fesziiltségek hatasara a vizsgalt P pontban 1étrejové deformaciot

jellemz6 fesziiltségmatrixot:

o, T, T,
277) F,=7, o, 7,
TZ.A sz O-z

amely az adott xyz jobbsodrast koordinata-rendszerben minden informaciot
tartalmaz az adott P pont fesziiltségallapotarol.
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Az alakvaltozasi matrixszal analdog modon a fesziiltségmatrix az ugy-
nevezett fesziiltségvektorokbol mint komponensekbdl allo vektor. Az x, y
és z iranyu fesziiltségvektorok:

(278) P, =| 7, :[crx 7, rﬂT:pi

(279) p,=|o, |=lr. o .]=p

(280) p.=|7, |=[r. 7, o.]=p:

amelyekbdl tehat felépithet6 a fesziiltségmatrix.

s

Py P,
@8y F,=p) [=[p. p, p.)=[pi| =lp. p, 0.]=F
p. P,

A fesziiltségmatrix is felirhaté az xyz koordinata-rendszer i, j ¢és k egy-
ségvektorai ¢s a fesziiltségvektorok diadikus szorzataként képzett 3x3-as
matrixok Osszegeként:

282) Ky =p,oi +p,oj +p, ok =iop +jop, +kop, =F,
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38. abra

A fesziiltségmatrix is szemléltethetd a kiskockan, amelynek lapjai merdle-
gesek az x, y és a z koordinatatengelyekre. Az F, métrix egyes elemeinek
értékeit a 38. abra alapjan mérjiik fel a koordinata-rendszerben: a o fesziilt-
ségek parhuzamosak a koordinatatengelyekkel, a 7 fesziiltségek elsé indexe
azt mutatja meg, hogy melyik koordinatatengely irdnyt lapon Iépnek fel,
a masodik indexe pedig azt mutatja meg, hogy melyik koordinatatengely
iranyaba mutatnak.

6.2.1. Fesziiltségallapot tetszoleges tengely iranydaban

Az F, matrix, és igy az p , p, és p_ vektorok ismeretében a P pontra hatd
fesziiltség tetsz6leges tengely iranyaban felirhatd, ehhez minddssze az adott
tengely iranyaba mutat6 egységvektorra van sziikség. Legyen ez az n egy-
ségvektor az F, koordinata-rendszerében: n" = [n; n,; n,], amelyre igaz,
hogy [n| =/ (n,2+n,+n?) =1. Az nirdnyu fesziiltségvektor a fesziiltségtenzor
matrixanak és az n egységvektornak a szorzataként all el6:
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n
n2
n3
o, T, T, o.n+r,n,+7 _n o
p,=F,n= T, O, T, TN +o N, +T Ny |=| P,
Ty T, O T, 7,0, + 0. n; Pr3
o.n +7,n, +7, N4 P
(283) p,=Fn=z n+on +7v . n=\p,
T +7T,,n, +0,n; Pn3

Ebbél meghatarozhaté az n irdnyu fesziiltség értéke a p_ és az n vektorok
skalaris szorzataként:

ny
o, :p: n=n’ Pn = [pnl P2 pn3] [pnlnl + 0.1, +Ion3n3]

(284) On = p:n =Pl T Py + Pzl

Osszefoglalva tehat a fesziiltség gy hatdrozhaté meg egy adott n egység-
vektor iranyaban, ha a fesziiltségmatrixot ezzel az egységvektorral balrol
¢s jobbrol is 6sszeszorozzuk:

(285) o, =n"F,n

A (284) egyenlet mindkét oldalat beszorozva n*-gal és kihasznalva, hogy
n egységvektor volta miatt nn* = 1:

(286) o =p,
(287) —

Két egységvektor (példaul m és n) altal meghatarozott sikban a nyirofe-
sziiltség értéke az elobb bemutatottal analdg modon szamithato ki azzal
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a kiillonbséggel, hogy a fesziiltségtenzort egyik oldalrol az egyik, a masik
oldalrél a masik egységvektorral kell megszorozni. Az F, matrix szimmet-
rikus volta miatt nemcsak a szorzas sorrendje 1ényegtelen, hanem hogy
melyik vektorral melyik oldalrdl szorozzuk a fesziiltségmatrixot:

(288) T =mEn=nFm=r,

Az alakvaltozasi tenzor matrixanak esetéhez hasonléan a szamolas itt is
miikddik visszafele. Azaz ismerve egy iranyban a fesziiltség nagysagat,
és ez az irany az a egységvektorral mint iranyvektorral jellemezhetd, amely
az xyz koordinata-rendszerben az i, j ¢és k egységvektorok linearis kombi-
naciojaként felirhato, akkor az a egységvektor komponenseit és a fesziiltség
értékét beirva a (284) egyenletbe kapunk egy haromismeretlenes egyenletet.
Ha még két iranyban (példaul egy b ¢és egy ¢ egységvektorral jellemez-
het6 iranyban) ismerjiik a fesziiltség értékét, egy harom egyenletbdl allo
haromismeretlenes egyenletrendszert kapunk, amelyet megoldva megkapjuk
a fesziiltségtenzor matrixat az xyz koordinata-rendszerben.

6.2.2. Foiranyok, fofesziiltségek

Hatarozzuk meg az alakvaltozasi allapothoz hasonloéan azt a koordinata-rend-
szert, amelyben a fesziiltségmatrixnak csak a féatlgjaban vannak nemnulla
elemei. Ehhez itt is eldszor meg kell hatarozni a matrix harom sajatértékét:

(289) det(F, —o,E)=0
o,—o, 1, T,
(290) r, o,—-0, 1, |=0
[ z-zy 0,0,

A kapott egyenlet egyes tagjait o, hatvanyai szerint csoportositva, a kobos
tag egyiitthatojaval leosztva és a négyzetes, a linearis ¢és a nulladrendii tag
egyiitthatojat rendre £ -gyel, 7 -vel és [/, -mal jeldlve:

(291) o —Io’ —Fo,—Fy; =0

ahol F,, F, és I,  a fesziiltségi tenzor ugynevezett skalarinvariansai:
(292) F=0 +0 +o
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(293) Fy=0.0,+0,0,+0,0,-(c2 +72 +72)
(294) F. = detF,

A (291) egyenletet megoldva o -re a harom kapott érték az F, matrix harom
sajatértéke, amelyeket nagysag szerint indexeliink, és az adott fesziiltség-
allapot fofesziiltségeinek neveziink:

(295) 0,20, 20,

Ebben a koordinata-rendszerben a fesziiltségi fésikokon nem miikddnek
csusztatofesziiltségek, ezért a fesziiltségmatrix

o, 0 0
(296) F,=|0 o, O
0 0 o,

alaku lesz. A fofesziiltségek ismeretében tetszbleges, az x, az y és a z ten-
gelyekkel a, f és p szdget bezaro, v iranyvektorral jellemezhetd tengely
mentén kifejezhetd a fesziiltségvektor:
P, = O'lvcos(a) + O'zvcos(ﬂ)+ O'3vcos(7/) =
(297)
p,cos(@)+p, cos(f)+p, cos(y)

ahol p, = o v, kihasznélva a (286)—(287) dsszefiiggéseket.

6.2.2.1. Sikbeli fesziiltségallapot

Sikbeli fesziiltségallapotnak nevezziik azt a fesziiltségallapotot, amikor
pontosan két fofesziiltség nem nulla. Ez azt is jelenti, hogy a fesziiltség-
matrix a kovetkezo alakot veszi fel:

o T

X

w
(298) F.=|r, o,
0

Y

oS O O
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Kiszamitva a fofesziiltségeket:
(299) o =0

2
o.+t0 O,.—0
(300) 02 == yi\/[ - yJ +7,,

Mekkora szdget zarnak be a féiranyok a (298) matrixanak koordinatatenge-
lyeivel? Ehhez eldszor irjuk fel altalanosan az eredeti koordinata-rendszer
x tengelyével a szoget bezaré m egységvektorral parhuzamos o nagysagu,
és az arra merdleges n egységvektor irdnyli 7 nagysagu csisztatofesziilt-
ségeket!

cosa —sina
(301) m=|sinag | n=| cosa
0 0

(302) o,=mFm=o0c_cos’ (a)+ 2r,, sin(a)cos(a)+ o, sinz(a)

(303) 7,, =nFm= —(O'x O )sin(a)cos(a) s (sin2 (a) - cos’ (a))

A (302)—(303) egyenleteket 2a szogfiiggvényeként felirva:

c.+o, 0,-0, .
(304) Opm 5 =+ 5 —cos(a) + 7, sin(2ax)

(o —O'y

X

(305) Tom = Ty, €OS(2X) — sin(2a)

Mivel a féfesziiltségi iranyokban a cstsztatofesziiltségek értéke nulla,
a (303)-at 0-val egyenl6vé téve és megoldva kapjuk:

21@_

(306) tg(2a) =

£3 y

L[ 2
o = —arctg ————
(307) b P
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6.2.2.2. Tiszta nyiras

Tiszta nyiras esetében a fesziiltségmatrix:

0 7z, O
(308) FP = T}x 0 0

0 0 O
Kiszamitva a fofesziiltségeket:
(309) o, =7,, O,= 0, o,= -7,

6.2.2.3. Hidrosztatikus és deviacios fesziiltségallapot

Hidrosztatikus fesziiltségallapotnak nevezziik azt a fesziiltségallapotot, ami-
kor mindharom féfesziiltség azonos. Nincsenek kitiintetett iranyok, minden
tengely fétengely, a fesziiltségallapot gdmbszimmetrikus. A fesziiltségmatrix
tehat a kovetkezo alakot veszi fel:

c, 0 O
(310) F,={0 o, O
0 0 o

Barmely fesziiltségallapot matrixa felirhatd egy gombszimmetrikus fesziilt-
ségmatrix ¢s egy ugynevezett fesziiltségdeviator 6sszegeként:

@311) F=F,+F,

6.3. Az altalanos Hooke-torvény

Tiszta homogén huzaskor nemcsak megnyulik a rad a hiizas iranyaban, hanem
keresztmetszeti kontrakciot is szenved (1asd 2.1. alfejezet). A (20) és a (30)
alapjan egy elemi kocka egyik lapjara meréleges iranyban (kihasznalva,
hogy ez az egyik fdirdny) o, nagysagh fesziiltséggel torténd hlizas esetében
felirhatjuk az élek fajlagos nyulasat, amelyek igy a fényulasok lesznek:
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6= g -0 -4
(312) T 2 E 3 E

ahol £ a Young-modulusz és v a Poisson-szam.
A masik két lapra merdleges iranyban, azaz a masik két féiranyban
o,-vel, illetve o,-mal terhelve a hasabot:

CZ CZ CZ
(313) §=—= & =-V—= g=-V—=
O3 O3 O35
(314) &§=— &=V—= g=-v—

Mivel a harom fesziiltség egyideji miikkodésekor az egyes iranyokban 1étre-
jOv6 fajlagos nyulasok additivak, a (312)—(314) egyenleteinek dsszeadasaval
kapjuk:

& :%[01 _V(Gz + 53)]
(315) &=l —vlo +or)]

1
&3 = E[O_3 _V(Ul +O_2)]

Azonos atalakitast végrehajtva:

1+v 1%
127 1—m(01+02+03)
316 o R - (6,+0,+0,)
(16) = o lerayta
1+v
E=—"1"105— (O-1+O-2+O-3)
E +v

valamint kihasznalva, hogy £ =2G(1 + v):
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qzj{q;;g}
2G 1+v

1 1%
317 S P -
G17) & 2G[Crz Y I}

1 14
-—lo,——F,
. 2G[03 1+v ‘}

ahol F, a fesziiltségmatrix els6 skaldrinvariansa. Az igy kapott harom egyen-
let felirhato a (273) és a (296) segitségével:

g 0 0 o 0 0 1 0 0
1 14
(318) 0 ¢ O0|=—|0 o0, O|——F|0O 1 O
’ G > 1+v !
0 0 g 0 0 o, 0 1
Tenzoros alakban:
1
(319) A=—|F-—L FE
2G 1+v

A (319) egyenletet, amely a fesziiltségi és az alakvaltozasi allapot kapcso-
latat irja le, altalanos Hooke-térvénynek neveziink. Az egyenlet hasonldan
levezethetd a (315) egyenletek atrendezésébdl a fesziiltségtenzorra:

1%
(320) F=2G| A+ 4 E
1-2v
ahol A4, az alakvéltozasi matrix elsé skalarinvaridnsa. Az altalanos
Hooke-térvény minden koordinata-rendszerben érvényes, nem csak a fo-
iranyokra illeszkedében.



7. Kihajlas

A 2.6. alfejezetben definidltuk a zomok €s a karcst rudak kozti kiilonbsé-
get: a zomok rudak atmérdje nagysagrendileg 6sszemérhetd a hosszaval,
mig egy karcsu rid esetében nem. Az ott elmondottak csak zomok rudakra
voltak érvényesek, mert a kihajlast nem vettiik figyelembe. Ezért most
visszatériink erre az esetre, karcsi rudak nyomasara.

Ha egy karcsu radra csak kis nyomofesziiltséggel hatunk, ugyanagy
viselkedik, mint egy zomok rud, és alkalmazhatoéak az arra az esetre el-
mondottak. Ha nagy nyomofesziiltséget alkalmazunk, akkor viszont a rud
alapvet6en megvaltoztatja az alakjat: kihajlik, esetleg el is torik.

Kisérleti eredmények azt mutatjak, hogy a kihajlas (buckling) bizonyos
koriilmények kozott mar akkor bekovetkezik, amikor a nyomoéfesziiltség még
a rugalmassagi hatart (—o,) sem éri el, més esetekben viszont csak ennél
nagyobb fesziiltségek esetében. El6bbit nevezziik rugalmas kihajlasnak (elas-
tic buckling), utdbbit plasztikus kihajlasnak (plastic buckling). Ha azonban
a tartd nem statikus, hanem csak révid ideig tart6é dinamikus terhelést kap,
a statikus terhelésnél érvényesnél nagyobb terhelést is el tud viselni kihajlas
nélkiil. Ezt az esetet nevezziik dinamikus kihajlasnak (dynamic buckling).
A kovetkezdekben csak az elsd kettével foglalkozunk.

7.1. Rugalmas kihajlas

Azt a tarto tengelyével parhuzamosan haté nyomderdt, amelynél a tartd
elkezd kihajlani, toréerének nevezziik, és F-vel jeloljiik. A kihajlas tehat
az ["> I er6k esetében torténik meg. Vizsgaljuk most a hataresetet, amikor
F = F, azaz hatdrozzuk meg a toréer6t. Ekkor a kihajlas infinitezimélisan
kicsi, vagyis alkalmazhatjuk azt a kozelitést, miszerint a kihajlott rad ten-
gely iranyt hossza megegyezik a nem kihajlott tartd hosszaval, ¢-lel.
Altaldban négyféleképpen alakitjak ki a kihajlasnak is kitett tartokat.
Az 1. eset a mindkét végén csukloval megfogott tartd, a 2. eset az egyik
végén befogott, a masik végén szabadon elmozdulni tudo tartd, a 3. eset
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az egyik végén befogott, a masik végén a tartd tengelyében elmozdulni
képes csukloval megfogott tarto, a 4. eset pedig a mindkét végén befogott
tartd, amelynél az egyik befogas (szintén a tart6 tengelyében) el tud moz-
dulni (39. abra). Nézziik meg ezeket az eseteket egyesével.

39. abra

7.1.1. Mindkét végeén csukloval rogzitett tarto

Vegyiink egy két végén csukloval befogott tartot ugy, hogy az egyik csuklo
a tartd tengelyében el tudjon mozdulni, és terheljitk meg a tartot ezen a végén
az F, erével, amelynek nagysagéra kivancsiak vagyunk (40. abra).

y

40. abra

Newton III. térvénye, azaz a statika IV. alaptétele szerint ekkor a tartd
mésik végén talalhato csukldban egy szintén F nagysagu, de ellentétes
iranyitottsagl reakcioerd fog fellépni.

Vegyiik fel a koordinata-rendszeriinket a 40. abran lathatd modon:
legyen az origd a fix csukld, és az x tengely essen egybe a tartd kihajlas-
mentes allapotaban a tart6 tengelyével. Jeloljiik y-nal a tarté adott kereszt-
metszetének kihajlasat. Milyen alaku lesz az y(x) fliiggvény?

A toréerd ¢s az y(x) fliggvénynek a meghatarozasahoz eldszor hajt-
sunk végre egy, a statikaban megtanult eréathelyezést, azaz adjunk hozza
arendszerhez a vizsgalt K keresztmetszetben egy egyensulyi erérendszert:
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egy x tengellyel parhuzamos, nulla kara F, alapt erépart. Ekkor az origobeli
F erd és az erépér negativ irdnyt tagja egy
(321) M, =yF,

nagysagu forgatonyomatékot képvisel. Ez és az erépar pozitiv tagja hat
a K keresztmetszetre.
Ez alapjan felirhatjuk a rugalmas szal differencialegyenletét:
2
(322) l:_Mx :y”(x):d )y
R I1E dx?
Behelyettesitve (321)-et és atrendezve kapjuk:

" F
(323) V') + - ylx)=0
Vezessiik be a
»_F
(324) o= T

jelolést. Ezzel a (323) egyenletet a kovetkezé alakban irhatjuk:

(325) y"(x)+7’p(x)=0

ami egy alland6 egyiitthatoja homogén linearis masodrendi differencial-
egyenlet. Ennek altalanos megoldasa:

(326) y(x)= 4sin(y x)+ Bcos(y x)

ahol az 4 és a B egyiitthatok értékeit a hatarfeltételekbdl tudjuk meghata-
rozni. Mik ezek a hatarfeltételek, mit tudunk a kihajlo tartorol?

Tudjuk, hogy az origdban, azaz az x = 0 helyen a kihajlas értéke nulla,
vagyis y(0) = 0. Ezt beirva a (326)-ba megkapjuk B értékét:

(327) 0= y(0)= Asin(y0)+ Bcos(y0)= Asin(0)+ Bcos(0)=0A4+ B
azaz B = 0. Ez azt jelenti, hogy a kihajlott tart6 alakja szinuszgorbe:
(328) y(x)= 4sin(y x)

Tudjuk még azt is, hogy a tartd masik végén, az x = ¢ helyen a kihajlas
értéke szintén nulla, azaz y(€) = 0. Ezt és a B-re kapott eredményiinket is
behelyettesitve a (326) egyenletbe:
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(329) 0=y(¢)= Asin(y £)+0cos(y ()= Asin(y ()

Egy szorzat akkor és csak akkor nulla, ha legalabb az egyik tényezdje
nulla. Ez a (329) esetében jelentheti egyrészt azt, hogy A = 0. Ez a trivialis
megoldas, ami azt az esetet irja le, amikor nincs kihajlas, hiszen amikor
A= B =0, akkor y(x) = 0.

A (329) egyenlet masik megoldasa az x = ¢ helyen levé csuklora, amikor
sin(y €) = 0. Ennek az egyszert trigonometrikus egyenletnek a megoldasa:

(330) yl=km, keZ

Mivel a tapasztalat azt mutatja, hogy a 40. abra szerint befogott tart6 csak
egy iranyba hajlik ki, azaz alakja egy fél szinuszgorbe, elegendé a y £ ==
esettel foglalkoznunk. Innen y-t kifejezve, négyzetre emelve (ezt megtehet-
jiik, hiszen minden paraméter értéke pozitiv) és visszahelyettesitve a (324)
egyenletbe:

(331) Fp_p
1E

Rendezve az egyenletet F-re, kapjuk:
(332) Ty £

Egy keresztmetszetnek azonban végtelen sok, tengelyre vett masodrendii
nyomatéka van, melyiket kell ide beirni az [ helyére? Természetesen a leg-
kisebb értékiit, hiszen arra lesz F, értéke minimalis. Nem azt az eréértéket
keressiik ugyanis, amely esetében a kihajlas mar barmelyik tengelyre be-
kovetkezhet, hanem azt, amelyik esetében mar egy tengely mentén meg-
torténik. A kihajlas pedig arra a tengelyre merélegesen torténik meg, ame-
lyikre a masodrendii nyomaték minimélis. Behelyettesitendé tehataz /=1
érték, ez fogja megadni azt a legkisebb eréértéket, amelynél a kihajlas mar
bekovetkezik, azaz a toréerot:

(333) F=x [jz—zE

Itt azonban a levezetés az 1. esetre, a 40. abra szerinti, két végén csukloval
befogott tartora tortént, ahol a kihajlott tarto alakja egy félperiodusnyi szi-
nuszgorbe. Azonban a tovabbi harom esetben mas és mas a befogas jellege,
ezért mas lesz a tartd kihajlas utani alakja, és igy a toréerd is.
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7.1.2. Egyik végén befogott, masik végén szabad tarto

A masodik esetben, az egyik végén befogott, masik végén szabadon elmoz-
dulni képes tarto esetében (41. abra), ha a tarto szabad végének elmozdulasat
y,-1al jeldljiik, a befogastol x tvolsagra a forgatdnyomaték értékét szintén
erbathelyezéssel meghatarozva kapjuk, hogy

(334) M, =F(y,-»)

Yo

L/
<

41. abra

A rugalmas szal differencialegyenlete:
F, F,
(335) "x)+ —= px)=—L
V() + o x) =
Az inhomogén differencialegyenleten itt is elvégezve a (324) szerinti helyet-
tesitést, megoldasat az
(336) y(x)= 4sin(y x)+ Bcos(y x)+ y,

Yo

alakban kereshetjiik. Az els6é hatarfeltétel: a tartd a befogasnal nem haj-
lik ki, azaz y(x) = 0, amelybdl B = -y . A masodik hatarfeltétel: mivel
a tartd egyik vége befogott, a befogas kozvetlen kdzelében a kihajlas soran
sem deformalddhat, azaz ott mindig a befogasra merdlegesnek kell lennie.
Matematikailag ez azt jelenti, hogy a befogasnal az érint6jének meredek-
sége nulla: y’(0) = 0, amelyet beirva a (336) egyenlet mindkét oldalanak
derivalasaval kapott

(337) y'(x)= A4y cos(y x)— B ysin(y x)

egyenlet bal oldalaba megkapjuk az 4 = 0 eredményt. Ezt és a B-re kapott
eredményiinket beirva a (336) egyenletbe megkapjuk a kihajlott tart6 alak-
jatis:
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(338) y(x)=y,(1-cos(yx))

Felhasznalva, hogy a tarté végenek pont y, a kihajlasa, azaz y(f) = y,:
(339) Yo = ¥o(1—cos(y £))

amelybdl azt kapjuk, hogy y, cos(y £) = 0. Az y =0 eset a trividlis megoldas,
amikor nincs kihajlas. A fizikai megoldast a cos(y €) =0 eset irja le, ahonnan

(340) M:§+kn, keZ

amelyekbdl a k£ = 0 esetet kell figyelembe venni, hiszen a kihajlott tarto
alakja a tapasztalat szerint egy negyedperiodusnyi (ko)szinuszgorbe lesz,
nem lesz ,,hullamos”. Innen

E 2

_gz_n_
(341 E 4

amelyet rendezve ¢s [ helyére a keresztmetszet legkisebb, tengelyre vonat-
koztatott masodrendli nyomatékat, / . -t behelyettesitve megkapjuk a toro-
erd értékét:

I . FE
342 E: 2 £ min
( ) n 4€2

7.1.3. Egyik végén befogott, masik végén csukloval rogzitett
tarto

A harmadik esetnél, amikor a tartd egyik vége befogott, a masik vége csuk-
16s rogzitésti ugy, hogy a csukld a tartd tengelyében tud csak elmozdulni
(42. abra), a befogott végen egy forgatonyomatck is kompenzalddik. Ez a csuk-
16s vég oldalirany(i elmozdulasanak hianya miatt 1ép fel, a 7.1.1. alfejezetbeli
esetnél a csuklok koriili elfordulas lehetdsége miatt, a 7.1.2. alfejezetbeli eset-
nél pedig a szabad vég y tengely menti szabad elmozdulasi lehetdsége miatt
nem jelenik meg.
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42. abra

Vegyiik fel a koordinata-rendszeriinket Gigy, hogy legyen a tarto tengelyé-
vel parhuzamos az x tengely, az erre merdleges pedig az y tengely, az origd
pedig legyen a befogasi pontnal. Jeloljiik a csuklonal fellép6 y iranya erét
G-vel (amelynek reakcidereje a befogasnal 1ép fel). Ennek az M = G (€ —x)
forgatonyomatéka is fel fog 1épni a tartd egy, az origotdl x tavolsagra levo
keresztmetszetén az F, erd itt fellépd y I nagysagu forgatonyomatéka mellett:

(343) M, =yF,-G((-x)
Ezzel a rugalmas szal differencialegyenlete

F G
344 i -4 =—-
(344) V) + ) = (0 -x)

A megoldast ismét a (324) szerinti helyettesités elvégzése utan az

(345) y(x)= Asin(j/x)+Bcos(7x)+%(£ —x)

alakban keressiik. Mivel a tartonak az origéban, ahol x = 0, az y iranyt el-
mozdulasa nulla, az elsé hatarfeltétel y(0) = 0. Ezt behelyettesitve a (345)
egyenletbe és azt megoldva kapjuk, hogy B = {F*/G. A masodik hatarfeltétel
a7.1.2. alfejezetbeli esethez hasonldan az origdbeli befogas tényébdl kovet-
kezik: a tarto itt nemcsak elmozdulni, de elfordulni sem tud, azaz a be-
fogasra biztosan merdlegesen indul, vagyis az alakjat leird gorbe érintdje
az origdban biztosan nulla lesz: y’(0) = 0. Ezt és a B-re kapott eredményt
beirva a (345) egyenlet mindkét oldalanak egyszeri derivalasaval kapott

(346) y'(x)= Ay cos(y x)— Bysin(y x)+ %

egyenletbe, kapjuk, hogy 4 = ¥, /(G y). Innen a kihajlott tart6 alakja:
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(347) y(x)= cfty (sin(y x)—y Ccos(y x)+y(¢ —x))

Felhasznalva, hogy a tartd csukloval rogzitett vége nem tud elmozdulni
oldalirdnyban, azaz y({) = 0, a (347) alakja a kovetkez6 lesz (mivel 7, # 0):

(348) 0= g‘ (sin(y £)—y tcos(y £)+ (£~ 1))
v

(349) y Lcos(y £)=sin(y ()

(350) te(y £)=r¢

Az egyenletnek tehat azok a megoldasai, ahol a tangensfiiggvény értéke
megegyezik argumentumanak értékével, vagyis ahol a tangensfiiggvény
metszi az 1 meredekségii y = x egyenest. A y £ =0 eset megoldas ugyan,
amely azonban vagy az £ = 0 esetben lehetséges, de 0 hossz esetén nincs
tartd, vagy a y = 0 esetben, amely azonban azt jelentené, hogy I = 0, azaz
nincs terhel6 erd. Ez tehat a trivalis megoldas, amikor nincs kihajlas. Ezért
a (350) legkisebb pozitiv megoldasat keressiik: pozitivat, hiszen sem az ¢,
sem a y nem lehet negativ, és a legkisebbet, ugyanis azt varjuk, hogy egy-
nél tobb ,,hullam” nem jelenik meg a kihajlott tarton (hiszen a tapasztalat
ezt mutatja). Ez a megoldas a y £ = 4,49 numerikus értéknél van. Leosztva
{-lel, négyzetre emelve és visszahelyettesitve a (324)-be kapjuk:

20,19 F
351 S
(35D T
ahonnan a toréero:
20,191 , F
(352) F =~ — 7

7.1.4. Mindkét végén befogott tarto

A negyedik esetben, amikor a tartd mindkét vége befogott, de az egyik
befogasi pont a tartd hossztengelyében el tud mozdulni (43. abra). A tarto
egy keresztmetszetében fellépd forgatonyomaték egyrészt a torderd athe-
lyezésébdl szarmazo yF, tag, masrészt a tarté mindkét végi befogasa miatt
gatolt elfordulasa miatt fellépé ismeretlen nagysagu, de yF -vel ellentétes



KIHAJLAS 119

iranyu M forgatonyomaték, azaz az egyik befogastol x tavolsagra a kereszt-
metszeten fellépd teljes forgatonyomaték:

(353) M =-M+yF,

x

F, F,

LN L

43. abra

A rugalmas szal differencialegyenlete:

F, M
354 ")+ =L p(x) = —
39 y(x)+1Ey(x) IE

A megoldast a (324) szerinti helyettesités elvégzése utan az

(355) y(x)= Asin(y x)+ Bcos(y x) + %

t

alakban kereshetjiik. Az elsd hatarfeltétel ismét az egyik befogasnal, x = 0-nal
valo y =0 elmozdulas kihasznalasa, azaz y(0) = 0. Ezt beirva a (355) egyen-
letbe megkapjuk B értékét: B = —M/F,. Ugyanitt a befogds miatt a tartd
gorbiilete nulla, azaz y’(0) = 0, ez a masodik hatarfeltétel. Ezt és a B mar
megkapott értékét behelyettesitve a (355) derivaltjaba:

(356) y’(x): A;/cos(y x)—- B;/sin(;/ x)
megkapjuk A4 értékét: 4 = 0, azaz a kihajlott tarté alakja

(357) y(x)= —%cos(y x)+%

M
(358) y(x)= - (1-cos(yx))

Felhasznalva, hogy a tartdé masik végén, x = £-nél szintén nem mozdul el
a tarto, azaz y(£) = 0, a (358) alakja
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(359) 0= % (1—cos(y 1))

t

lesz. Mivel M # 0, ezért a (359) egyenlet jobb oldalan a szorzat csak akkor
lehet nulla, ha

(360) cos(y ()=1
amelynek megoldasai:
(361) yl=2kn, keZ

A k=0 megoldas esetében vagy az £ = 0, vagy a y = 0 eredményt kapjuk.
Az els0 azt jelentené, hogy nincs tart6, a masodik, hogy I, = 0, vagyis nincs
terheld erd, igy ez a trivialis megoldas, amikor nincs kihajlas. A k=1 esetben

(362) yl=2n

ahonnan kifejezve y-t, négyzetre emelve és visszahelyettesitve a (324)-be
és I*-re rendezve megkapjuk a toréerot:

(363) 7o Mo
' ?

7.1.5. A kihajlo hossz

Osszehasonlitva a (333), (342), (352) és (363) egyenletek altal meghatarozott
toréerék nagysagat a négy esetre, azt latjuk, hogy egy konstans szorzotol
eltekintve mindnek az alakja azonos. A 3. eset kivételnek tlinik, mivel nem
szerepel benne 7%, de a 20,19-es szorzot atalakithatjuk az ezzel majdnem
pontosan megegyez0 (a valodi értéktdl csak 2%-kal eltérd) 2n? alakra. Ezzel
most mar valoban mindegyikben csak egy konstans szorzo az eltérés, ame-
lyet jeloljiink K>-tel:

(364) F =7 émzf;

igy K értéke a négy esetben rendre 1, 2, l/ﬁ és 0,5. Az l/\/z-t szoktak
0,7-re kerekiteni. Ezek rudhosszba valo ,,beolvasztasaval” bevezethetjiik
az ugynevezett kihajlo hosszat (effective length): { ;= K € (44. ébra), amely
fizikailag a kihajolt tartot leiro gorbe két inflexios pontja kozotti tavolsagot
jelenti (ezekben a keresztmetszetekben a hajlitonyomaték nulla).
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44. abra

(365) F =

Osszefliggést kapjuk, amelyet Euler-képletnek® neveziink, mivel elséként
Leonhard Euler vezette le 1757-ben. Ebbdl adott 4 keresztmetszetli tartod
esetén a toréfesziiltség szamolhato:

(366) o =n Lunl mi“f

Al
Gondoljuk at a kovetkezot: hogyan valtozik a toréfesziiltség nagysaga, ha
a keresztmetszet feliiletét, A-t valtozatlanul tartva korlap keresztmetszetrol
egyre novekvo atmérdjii korgytri alak( keresztmetszetekre tériink at?

A (366) kifejezésben a masodrendii nyomatékon kiviil minden konstans,

I pedig kor és korgyiirli keresztmetszet esetén minden tengelyre azonos.
Egységnyi keresztmetszetii (4 = 1) korgytiri alaku tartd esetében a kiilsd
atméro (D) fliggvényében a belsé atméro (d) a
(367) jo |Pim-4

T
kifejezéssel szamolhatd (mivel R’ — r’n =1 és D = 2R, valamint d = 2r),
amelynek felhasznalasaval a masodrendli nyomaték

2
(368) j_mD -2
81

Leonhard Euler (1707-1783), svajci matematikus, fizikus, csillagasz, logikus, mérnok.
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Vagyis a masodrendli nyomaték és igy a toréfesziiltség is a kiilsé6 atméro
négyzetével aranyosan novekszik. Ugyanannyi anyagbdl tehat kor helyett
korgytri keresztmetszetl tartdt készitve a kihajlas csak nagyobb fesziilt-
ségnél kovetkezik be.

Mivel a (365) alapjan meghatarozott toréerénél a tarté mar éppen elkezd
kihajolni, ezért a gyakorlatban az ennél kisebb, ugynevezett megengedett
er6t hasznaljuk, amely a toréerdnek és egy b biztonsagi tényezonek (factor
of safety vagy safety factor) a hanyadosa:

(369) r _h

A toréerd vagy a megengedett erd ismeretében elemi modon szamolhatd
a toréfesziiltség ¢s a megengedett fesziiltség:
Foew _0, _ 1

370 Omee =, — 3 — L
G70) T4 T Ab
ahol A4 a tart6 keresztmetszete.

A masodrendi nyomatékot felirhatjuk a tarto keresztmetszete és az iner-
ciasugar (i) segitségével [lasd a 3.9. alfejezetben a (169) dsszefiiggést]:

(371) I= AP
(372) T

min

ahonnan az inerciasugarat kifejezve

373 i—\ﬁ
(373) V4

1

(374) io=  [~min
min A
és ezzel a toréfesziiltség
2 =2
n i
(375) o, = " min
0

Vezessiik be a karcsusagi tényezét (1) (slenderness ratio), amely a rad zomok-
ségének, illetve karcsusaganak mérészama:
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(376) A=—0

A karcsusagi tényezovel kifejezve a toréfesziiltséget:
2

T

(377) LT

A toréfesziiltség tehat csak a tartd anyagatol, valamint hosszanak és kereszt-
metszetének aranyatdl fiigg, amelyeket a Young-modulusz és a karcsusagi
tényezok irnak le. Mivel egy adott anyagra a Young-modulusz értéke kons-
tans, ezért azt latjuk a (376) és a (377) kifejezések alapjan, hogy a toréfe-
sziiltség a karcsusagi tényezod négyzetével forditottan aranyos. Ezt a gorbét
Euler-hiperbolanak nevezziik.

7.2. Plasztikus kihajlas

Mint az el6z6 alfejezetben emlitettiik, a rugalmas kihajlas akkor kovet-
kezik be, amikor a fesziiltség még nem éri el a rugalmassagi hatért (o),
ezért az Euler-képlet csak abban az esetben alkalmazhat6 az adott tartora,

ha arra a karcstsagi tényez6 nagyobb egy, az adott anyagra meghatarozott
A, €rteknél (45. dbra).

4

“\

' Euler-
[s Tetmajer- hiperbola
egyenes

oYU |

op

Ao A
45. abra
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Ennél zomokebb rudak esetében a mar kihajlast okozd fesziiltség nem
az aranyossagi hatdron beliil van, hanem o, ¢és a folyashatér (o) kozott.
Ebben a tartomanyban a toréfesziiltség a karcstisagi tényezonek linearis
fliggvénye. Ezt az Osszefliggést eldszor a felvidéki Korompan sziiletett
Ludwig von Tetmajer (Tetmajer Lajos, 1850—1905), a ziirichi Szovetségi
Politechnikai Intézet (ma Szovetségi Miszaki Fdiskola, Eidgendssische
Technische Hochschule, ETH) professzora mérte ki.

A folyashatart elérve barmekkora a karcstsagi tényez06, nem torténik
kihajlas, mivel a tarté anyaga megfolyik.



8. Egyiranyu osszetett igénybevételek

Egyszerii igénybevételeknél a szerkezetre csak egyféle igénybevétel hat,
amelynek hatasara felléphet normalis (6) vagy csusztatofesziiltség (), de
mindig csak egyféle. Ha azonban kétféle igénybevételnek van a szerkezet
kitéve, akkor a két egyszerii igénybevétel hatasara fellépd két fesziiltség
lehet azonos tipust vagy kiilonbozo.

Ha mindkét fesziiltség normalis fesziiltség vagy mindkettd cstsztatod-
fesziiltség, akkor egyiranyu Osszetett igénybevételrdl beszéliink. Ebben
az esetben az egyes igénybevételek altal 1étrehozott fesziiltségek egysze-
rien 6sszeadhatoak.

Ilyen igénybevételek a hlizas (nyomas) és hajlitas (6—6) és a nyiras
és csavaras (t—7). Mivel az egyideji nyiras ¢és csavaras esete mas, nagyobb
hatasu igénybevétel nélkiil csak nagyon ritkan fordul eld, ezért csak a huizas/
nyomas €s hajlitas leirasaval foglalkozunk a tovabbiakban.

Ahogy a 2.2. alfejezetben lattuk, a huzasbol (nyomasbol) szarmazo
fesziiltség merdleges a keresztmetszetre, amelyre a huzoé(nyomo)erd hat.
Hasonloan, a tiszta hajlitasbol eredd fesziiltség is (mivel a hajlitast el6idézo
forgatonyomaték felfoghatd egy keresztmetszetre merdleges eréparként is)
merdleges a keresztmetszetre (3. fejezet). Ezért az egyes sikokban fellépd
Osszfesziiltség egyszeriien a (22) és (58) egyenletekbdl az adott rétegre
szamitott fesziiltségértékek eldjeles 6sszegeként all eld.

Mivel mind a htizasbol, mind a hajlitasbol szarmazo fesziiltségek lehet-
nek pozitiv és negativ eldjeliiek is, a maximalis fesziiltség nagysagat ezek
abszolut értékeinek dsszegeként kapjuk:

F M

(378) ‘O_max’ = ‘Ghﬁzé,max‘ + |o-hajlité,max‘ = Z + 7 e

A fesziiltségeloszlas tehat a 46. abran lathaté modon alakul.



126 MECHANIKA II.

Y éhuzo | Uhaiméy ' Omax
g —Ohajlit6

46. abra

y

\J\L
Q

A htzasra (nyomasra) és hajlitasra igénybe vett tartdo méretezése a maxi-
malis fesziiltség ¢s a megengedett fesziiltség figyelembevételével torténik:

!

(379) c. <o

max — ~ meg

8.1. A semleges réteg meghatarozasa

Hol lesz az a sik, ahol az 6sszfesziiltség nulla? Ennek meghatarozasa egy-
szerlien a (22) és (58) egyenleteknek, a htizasbol és hajlitasbdl szarmazo
fesziiltségjarulékok Osszegének nullava tételével torténik:

(380) O = Oz t Ogjiirs = Z + 7)’0 =0
Az egyenletet y -ra rendezve kapjuk:
FlI
381 —=
(381) Yo=""g

amely a semleges rétegnek a stilyponti tengelytél mért tavolsagat adja meg,
ha az y tengely iranya az ellentétes eldjelti huzo- és hajlitofesziiltségii réte-
gek feldl az azonos eldjeliick iranyaba mutat.
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8.2. Hengeren atvetett szij

Vegyiink egy D atmér6jii hengeren atvetett £ szélességli és b vastagsagu
rugalmas szijat, amelyet mindkét lelogd végén egy-egy F er6 terhel (47. abra).
A szij mekkora vastagsaganal lesz a ra hato fesziltség a legkisebb?

/

47. abra

A szij hengerre felfekvo részének igénybevétele huzas ¢s hajlitas, ami egy
egyiranyu Osszetett igénybevétel. A (378) alapjan tehat a szijban fellépo
maximalis fesziiltség

F Mb
Gmax =—+—
A T2

ahol 4 = b € a szij keresztmetszete.

Vékony szij (azaz b << D) esetén a szij R gorbiileti sugara a henger
atmérodjének felével kozelitheté: R = D/2

Az (56) Osszefiiggést felhasznalva tehat

(383) M _1_

IE R

(382)

2
D

amelybol az M/I aranyt kifejezve és (382)-be visszairva (és az 4 = b £ helyette-
sitést elvégezve) a maximalis fesziiltség a szij b vastagsaganak fliggvényében:

(384) o (b)= L 2ED_ 1 BE

“be D2 bl D



128 MECHANIKA II.

o 57
4<
34 SO +g(6)
2 g)=¢
'IA
RO =1/t
0 T T T T 1
0 1 2 3 4 5

48. abra

Azt kaptuk tehat, hogy a maximalis fesziiltség a b szijvastagsag két fligg-
vényének 0sszege: annak els6 és minusz egyedik hatvanyanak dsszegével
aranyos. Az ilyen fliggvénynek (kvalitativ menetét lasd a 48. abran) egy
minimuma van, amely a

do . (B)

385 —mat =0
(385) b

egyenlet megoldasaval megkaphato:

F
e Ny
bt D
D
b= }—
(387) 7

A minimalis fesziiltséget eredményez6 szijvastagsag tehat a terheld erd,
a henger atmérdje, a szij anyaganak Young-modulusza és a szij szélessége
ismeretében meghatarozhato.

(386)

8.3. Kiilpontos hizas vagy nyomas

Vegyiink egy keresztmetszetet, amelyre egy F huzo- vagy nyomoéerd hat,
a tarto tengelyével parhuzamosan, de nem a keresztmetszet sulypontjaban,
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hanem attdl (példankban az y tengely mentén) 4 tavolsagra. Ezt a terhelést
kiilpontos htizasnak (nyomasnak) nevezziik, €s szintén egyiranyu dsszetett
igénybevétel, hiszen az er6 hatasa felirhato egy, a keresztmetszet tengelyé-
ben torténd hazas és egy tiszta hajlitas sszegeként.

Adjunk hozza a rendszerhez egy egyensulyi erérendszert, egy nulla
kart, F alapt erOpart a keresztmetszet tengelyében. Lathato, hogy ekkor
a keresztmetszetre minden pontjaban hat egy o, . = F/A nagysagh huzo-
fesziiltség, és a keresztmetszet tengelyétdl valo tavolsag fiiggvényében
az egyes rétegekre egy g =M y/I=F hyl/l nagysagu hajlitofesziiltség hat.

A két fesziiltséget 6sszeadva megkapjuk az egyes rétegekre hato fesziilt-
ség nagysagat:

F Fh

(388) O = Oy T Ongiiis = Z + T Y

egyenlévé nullaval, ¢s fejezziik ki y -t:

FI 1

659 W= Fan A

8.4. Magidom

A (389) fiiggvény azonban adott keresztmetszetre nem korlatos: a / para-
méter csdkkentésével y, eldbb-utobb nagyobb lesz, mint az adott irdnyban
a keresztmetszet sz€Is6 szalanak tavolsaga. Ha ennél a A tavolsagnal koze-
lebb hat a terhel6 er6 a keresztmetszet tengelyéhez, akkor a keresztmetszetre
vagy csak pozitiv, vagy csak negativ fesziiltség hat az F er0 iranyitottsa-
gatdl fiiggden.

Azy, értékét minden tengely mentén egyenl6ve téve a sz€ls6 szal tavol-
sagaval, majd igy meghatdrozva a h értékét és ezeket dbrazolva a kereszt-
metszeten egy olyan sikidomot kapunk, amelyen ha beliil hat a terhel6 F
erd, akkor a keresztmetszeten fellépd fesziiltségek azonos eldjeltick lesznek.
Ezt a sikidomot az adott keresztmetszet magidomanak nevezziik.

Vegyiik észre, hogy a (389) kifejezés alapjan y, nem fligg az F erd
nagysagatol, csak a keresztmetszet masodrendii nyomatékatol, feliiletének
nagysagatdl és az F er6 tamadaspontjanak helyzetétl. A magidom alakja
¢és nagysaga tehat a keresztmetszet inherens tulajdonsaga.
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A 49. abran lathato téglalap alakt keresztmetszet z tengelyre vett
masodrendli nyomatékat a (78) alapjan ismerjiik, a keresztmetszet teriilete
ab, a sz¢1s6 szal tavolsaga pedig, amikor a z tengely a hajlitas tengelye, b/2.
Ezeket az értékeket a (402)-be beirva, majd 4 -ra rendezve (és az eldjeleket
mindeniitt pozitivnak véve, hiszen az elrendezés szimmetrikus, a tengely
negativ iranyaban azonos nagysagu, csak ellentétes eldjelii értéket kap-
nank £ -ra):

ab’

(390) b__ 12
2 ab h,
b

(391) I -

0,téglalap,z g

Hasonldan az y tengelyre A = a/6. A magidom a 49. abran sziirkével

N 0,téglalap,y
van jelolve.
y
$wis
b
z
<
al6
y y
A A
a
49. abra

Kor keresztmetszet esetében minden tengely ekvivalens, vagyis a magidom
is kor lesz. A (389)-be beirva a sz€Is6 szal tavolsagat, amely a korlap sugara,
R = D/2, a korlap teriiletét, amely D’n/4 és a (85) alapjan a masodrendii
nyomatékot, 4 -ra rendezve megkapjuk a magidom sugarat:
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Dn
(392) D = 26—4
2 D°n
4 o
D
(393) Ho o = B

Korgytri keresztmetszet esetében a magidom szintén kor a keresztmetszet
forgasszimmetridja miatt. A sz¢ls6 szal tavolsaga tovabbra is a korgytri
kiilsé sugara, R = D/2, de a teriilet (D> — d?) w/ 4, ahol r = d/2, a korgytrii
belsé sugara. A masodrendi nyomaték a (88) kifejezés alapjan irhatd be
a (389) egyenletbe, amelyet 4 -ra rendezve a magidom sugarat kapjuk meg:

(D4 —d4)n
(394) D _ 64
2 iDz —d? in h
4 0
2 2 2
395 _ D d _ d _ r
(395) o woreyis = g[l + (B) J =Ny i o e + T

Mikor fog a magidom teljes egészében a korgyirii lyukas belsejébe esni,
azaz mikor lesz 4 < r? Ehhez a
2

R r
396 h . . .=—+—<Lp
( ) 0,kérgytirti 4 4R

egyenldtlenséget kell megoldani. Mivel benniinket most csak az egyenl6t-
lenség fizikai megoldasai érdekelnek, szoritkozzunk az »> 0 és R > 0 eset
megoldasainak keresésére. Megoldva az egyenlétlenséget R-re és r-re kapjuk:

(397) -v3)r<rR<2++3)r
(398) -3)rR<r<(2+3)R
Felhasznalva, hogy R > r, kapjuk, hogy az

(399) R<2+3)r & r>(2-v3)R

feltételeknél esik a korgytri egész magidoma a korgytri lyukas részébe.
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8.5. Ferde hajlitas

Kiilpontos huzas (nyomas) esetében a tarto egy keresztmetszetére hato erd
nem a tartd sulypontjaban hatott, de a tart6 tengelyével parhuzamos volt.
Ha az er6 a tart6 sulypontjaban hat, de iranya nem parhuzamos a tarto
tengelyével, hanem arra meréleges, ferde hajlitasrol beszéliink (50. abra).
Ha a hajlitoer6 és a reakciderdje hatasara fellépo forgatonyomaték vektora
egybeesik a keresztmetszet egyik fétengelyével, akkor egyenes hajlitasrol
beszéliink.

F,
50. abra

Vegyiink egy egyik végén befogott, £ hosszusag tartdt, amelyet a szabad
végén (jeloljiik ezt a keresztmetszetet K-val) egy F er6 ferde hajlitasra ter-
hel. Jeloljiik az F er6 és az y tengely altal bezart szoget a-val, és bontsuk fel
a terhel6 erdt két merdleges komponensre: az egyik az y tengellyel legyen
parhuzamos, a masik a z tengellyel. Ekkor

(400) F =F cos(a)
401 F_=Fsin(a)
A két erd reakcidereje, amelyek nagysaga azonos, de iranyuk ellenté-
tes F -nal és F -vel, a befogasnal ébred, jeldljiikk ezeket F, -vel és F_"-vel
(F +F '=F ) Az F ¢sazF_er6aK keresztmetszetet nylrasra terheh
mig az F F’ésazFF’ eroparok (amelyek forgatonyomatékaival az M

ésaz M’ ’ reakci6- forgatonyomatekok tartanak egyensulyt) a tartot és 1gy
a K keresztmetszetet is hajlitasra terhelik:

(402) M, =(F,=(Fsin(a)

5
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(403) M, =(F,=(F cosla)

Az M, ¢és az M_forgatonyomatékok felfoghatok tigy is, mint egy M forgato-
nyomaték két, adott tengely iranyi komponense (51. abra), amivel szintén
a (402)—(403) egyenletekre jutunk.

51. abra

A ferde hajlitast tehat visszavezettiik két, az y és a z tengely koriili egyenes
hajlitasra. A (402) és (403) egyenletek mindkét oldalat négyzetre emelve
¢és az igy kapott egyenleteket 6sszeadva:

404y M;+M; =M’ (sin2 (a)+cos? (a)): 0’F? (sin2 (a)+cos® (a))
Mivel sin?(a) + cos’(a) = 1, M2, £? és F? pedig pozitiv, négyzetgyokot lehet
vonni:

(405) M=(F

Az M vektor és a hajlitas tengelye merdleges a terhelés sikjara, azaz az F
¢és az F’sikjara. A K keresztmetszet egy d4 feliiletelemén ébredd fesziiltség:

M .
(406) a:sz+_yzzchos(a)erﬁFsm(a)Z
£ . 1, I,

A semleges tengely nem meréleges a terhelés sikjara. Jeloljiik f-val a sem-
leges tengely ¢és az y tengely altal kozrezart szoget. Ekkor

2
@07) tela)ie(8) =

z

amelybdl f mar szamithato.



Vakat oldal



9. Tobbiranyu odsszetett igénybevételek

Ha egy testre kétfajta igénybevétel hat, €s az egyik altal 1étrehozott fesziiltség
normalis (6), a masik altal Iétrehozott fesziiltség pedig csusztatofesziiltség
(t), akkor tobbiranyt 6sszetett igénybevételrdl beszéliink.

Az egyiranyu Osszetett igénybevételektdl eltéréen itt a két fliggetleniil
kiszamolt fesziiltségérték nem adhat6 egyszeriien 6ssze, hiszen egymasra
mer6leges vektorokrol beszéliink. A méretezés ezért itt tovabbi szamolast
igényel.

Az igénybevételek, amelyeknél kiilonb6z6 tipust fesziiltségek 1épnek
fel: a hajlitas és nyiras, a huzas (nyomas) és csavaras, a hajlitas és csavaras,
valamint a hizas (nyomas) és nyiras. Ez utobbi esettel nem foglalkozunk,
mivel a legritkabb esetben fordul ¢ld, hogy az adott terhelés hatasara csak
ez a két igénybevétel 1ép fel, hajlitas nem (és ekkor a nyiras mar elhanya-
golhato lesz).

9.1. Hajlitas és nyiras

Ahogy a 3.10. és a 4.1. alfejezetekben mar emlitettiik, ha egy szerkezetben
talalhato csak tiszta hajlitasra vagy csak tiszta nyirasra terhelt tartd, annak
1éte inkabb kivétel, mint szabaly. A gyakorlatban altalaban a nyirasra ter-
helt tart6 hajlitasra is terhelve van, és forditva. Ez utobbi azt jelenti, hogy
a hajlitonyomaték nem allando a tarto tengelye mentén.

9.1.1. Hajlitasra és nyirasra terhelt kéttamaszu tarto
Vizsgaljunk meg tehat egy ilyen, az 52. abran lathato, hajlitasra és nyirasra

is terhelt kéttamasz( tartot (a hozza tartozo kvalitativ nyirderd- és hajlito-
nyomatéki abrat felrajzoltuk).
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IR

LI A

X dx
VA
14 Vi dV
M. -
"TA Mham
52. abra

Legyen az xy sik a tartd szimmetriasikja (azaz az y tengely az egyes kereszt-
metszetek szimmetriatengelye), az xy sik legyen a terhelés sikja is, valamint
a hajlitas tengelye legyen a z tengely. A keresztmetszet z tengellyel parhu-
zon. Valasszunk egy dx széles rudelemet a tartd bal szEélétdl x tavolsagra.
Ennek a rudelemnek a két sz€ls6 lapjan a hajlitasbol ered6 o fesziiltség is
fellép, és a nyirasbol eredd T fesziiltségek is ébrednek, emellett (a csuszta-
tofesziiltségek dualitasa miatt) a tartd tengelyének iranyaban is fellépnek
T fesziiltségek. A rudelemnek a bal oldali lapjat terheld nyiroerét V-vel
és az itt fellépd hajlitonyomatékot M-mel jeloljiik, mig a jobb oldali, a tartd
bal oldali végétdl x + dx tavolsagra levo lapot terheld nyirderét V + dV-vel,
hajlitonyomatékot M + dM-mel jeldljiik (53. abra).

VA
= —— TN =
Zfe o x z
" g D o \ / ’
o E
A,B: FA', B A B
o, = = ¢, +do, \ X /
= — fy
C C' C
Yy VadV Yy
L N

53. abra
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Tekintsiik a rudelem egy dx hosszusagu szakaszat. Valasszunk ki egy 2z
sz¢lességli, dy magassagu feliiletelemet a dx hosszusagi rudelem bal oldali
hatarolo keresztmetszetén, amelynek nagysagat jeloljiikk d4-val, az ezen fel-
1épd normalis fesziiltséget pedig jeldljiik 6 -szel. Hasonloan, a jobb oldali
hatarold keresztmetszetnek a tarto tengelye mentén dx tavolsaggal arrébb
talalhato, szintén d4 nagysagl és a tartd allando keresztmetszete miatt
dA-val analog helyen fellépd fesziiltséget jeloljik 6+ de -szel.

A keresztmetszet két, a hajlitas tengelyétdl tetszéleges tavolsagban levd
szakasza kozti teljes fellépé normalis fesziiltséget, példaul az AB szakasz
¢és a keresztmetszet széle, a C pont (azaz az xz siktdl +e tavolsagra levo
réteg, ami jelen esetben egyetlen szal) kozotti teljes o -et az

(408) f o,d4

Yo
integral segitségével szamolhatjuk. Ez ekvivalens az ABC sikidomra hato
erével. A dx tavolsaggal arrébb levo keresztmetszeten, az analég A’B’C’
sikidomon fellép6 normalis fesziiltség nagysagat az

(409) I(O'x +d0'x)dA
Yo
integral adja meg.

Az ABA'B' térfogatelemen fellépd x iranyu nyirderdk ereddje a térfogat-
elemben fellépd, y irdnyt z | €s a térfogatelem 2 z dx térfogatanak a szorza-
taként adhatd meg, hiszen ebben a nyiras sikjara meréleges térfogatelemben
anyirofesziiltségek minden pontban azonosak. A csusztatofesziiltségek dua-
litasa miatt azonban az ABA'B' térfogatelem minden pontjaban egy t,-nal
azonos nagysagu, de ra mer6leges iranyu T, fesziiltség is fellép. Felirva
tehat a térfogatelemben fellépd cstisztatofesziiltségek 0sszegét:

(410) Tapan =7 (22)dx
Mivel egyensulyt vizsgalunk, ezért a vizszintes iranyt erék 6sszegének nul-

lanak kell lennie. A dx radelem két hataroldlapjan fellép6 normalis fesziilt-
ségek kiillonbségével az x iranyu csusztatofesziiltségek tartanak egyensulyt:

@11) j(ox +do_)dA -~ Ia dd-7_ (2z)dx=0

Yo Yo
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Rendezve az egyenletet kapjuk:

tdo
@12) | =7, (22)

Yo

A hajlitas tengelyétdl y tavolsagban levd szalakra a normalis fesziiltség
értéke a Navier-képlettel szamolhat6 (ahol / a teljes keresztmetszet masod-
rendli nyomatéka):

M
(413) o, = VA y
Mindkét oldalt x szerint derivalva:
(414) do, _dM y
dx dx 7

Mivel a hajlitonyomaték hely szerinti derivaltja a nyirder6, ezért a V= dM/dx
helyettesitést alkalmazva:

do y
415 e Y24
(415) & ]

Ezt behelyettesitve a (412)-be és a V/I tagot, mivel konstans, az integralas
elé kihozva:

V e
(416) i [yda=r,(22)
Yo

Az integral nem mas, mint az ABC sikidomnak a hajlitas tengelyére vett
elsérendii nyomatéka, azaz S, .= ly d4:

Vo
@17) —Seane =7, (22)
Innen a csusztatofesziiltséget kifejezve:
418 r, = Suanc
@1e) * 7T (22)

ahol (2 z)-t, a keresztmetszet ABA'B' sikbeli méretét husvastagsagnak nevez-
ziik. Bar ez az ABA'B"-dy térfogatelemben fellépé csusztatofesziiltségek
nagysaga, a csusztatofesziiltségek dualitasa miatt ezzel a kozelit6 képlettel
szamithatok ki a dx hossztsagt rudelem hataroldlapjain az ott fellép6 nyiro-
fesziiltségek is. Ez természetesen azt jelenti, hogy ott rétegrol rétegre valto-
zik annak nagysaga, ¢s mivel a sz¢lsd szal esetében S = 0, ezért ott 7, =0.
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A (418) képlettel kapcsolatban azonban harom dolgot nem szabad el-
felejteni. Az elsd, hogy ez, bar a tapasztalat szerint meglehetdsen pontos, de
mégiscsak egy kozelitd képlet. A masodik, hogy a levezetés feltételezései
miatt ez csak akkor érvényes, ha az y tengely a keresztmetszet szimmetria-
tengelye. A harmadik, hogy csak a nyirofesziiltség y irany it komponensét adja
meg. Mivel egy rud felszinén csak érintdiranyu fesziiltségek ébredhetnek,
ezért ha a keresztmetszet oldalai nem parhuzamosak az y tengellyel (mint
késobb latni fogjuk példaul kor keresztmetszetre), a teljes T, = T, tT, 08y
adott pontban az adott pontbeli érint6 y tengelyhez képesti hajlasszogének
ismeretében még meghatarozando.

9.1.1.1. Fesziiltségeloszlas téglalap keresztmetszet mentén

Hatarozzuk meg egy olyan téglalap keresztmetszetii tartéra a ¢ (y) fligg-
vényt (54. abra), amelynek z irany mérete a, az y irany( mérete b, valamint
a keresztmetszetre hat6 nyiréer6é V. Ekkor a masodrendi nyomaték a (78)
alapjan I = ab’/12 és a hlisvastagsag (2z) = a. Ezek a mennyiségek a teljes
keresztmetszetre allandoak.

54. abra

Ami valtozik, az az elsérendi nyomaték. A stlyponti tengelytdl y tavol-
sagra levo réteg és a keresztmetszet sz¢&ls6 rétege kozotti tavolsag b/2 — y,
mivel a sulyponti tengely és a sz¢&ls6 szal tavolsaga b/2. A kérdéses réteg
és a sz¢1s0 réteg kozotti sikidom sulypontja tehat ennek felénél helyezkedik
el (mivel téglalaprol van szo), és ehhez még hozza kell adni y-t, hogy a teljes
keresztmetszet sulypontjatol vald tavolsagot meghatarozzuk:
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b
P
(@19) RV I
5, ()= y+=5 )
Ebbdl az elsérendii nyomaték:
b b y b
@20) s _[L_ a(—— Sy A
X(y) 2 4 2 4 2 8

Ezeket az értékeket behelyettesitve a (418)-ba egybdl a teljes nyirdfesziilt-
séget kapjuk meg, hiszen a b oldal pArhuzamos az y tengellyel, ezértz =0:

y2 . bZ
v Tots e,
421 — S =
“2) Txe(y) T"y(y) ab’ a ab’ - +Zab

12

A nyirofesziiltség tehat a keresztmetszet mentén masodfokt parabola sze-
rint valtozik. Ha egy Osszetett keresztmetszet felbonthat6 az y tengelyre
szimmetrikus téglalapokra, a nyiréfesziiltség fliggvénye akkor is parabo-
laivekbdl fog allni, amelyeknek zérushelyei tovabbra is a keresztmetszet
sz¢ls6 szalainal lesznek. Ahol a husvastagsag ugrasszeriien valtozik, ott
at (y) fliggvény két értékét kell kiszamitani: a z (y —0) ésaz (y + 0)
értéket. Mivel az argumentumok kiilonbsége infinitezimalisan kicsi (nulla),
mindkét érték szamolasanal ugyanazokat az értékeket kell a (418) kifeje-
zésbe behelyettesiteni, a kiilonbség minddssze a (2 z) hiisvastagsagban lesz,
hiszen ez az egyetlen paraméter, ami megvaltozik. Az y tengely mentén
vald elmozdulas infinitezimalis volta miatt még az elsérendii nyomaték
értéke sem valtozik meg.

A (421) figgvény elsé derivaltjanak zérushelye megmutatja, hogy hol
veszi fel a nyirdfesziiltség a maximumat:

12V
422 d =—
( ) Txe (y ) a b3

y=0

amelyet rendezve az y = 0 hely, a keresztmetszet silypontja adédik maxi-
mumhelynek. Itt a nyirofesziiltség értéke 3V/2ab. Mivel az ab szorzat
a keresztmetszet teriiletét jelenti, ezért ezt 4-val jeldlve és igy kifejezve
art, . értekét:
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3V
Txe max =37
’ 2 4

A fesziiltségeloszlas kvalitativ grafikus abrazolasat az 55. abran lathatjuk.

_aﬁp

423)

<

Ty Ty

55. abra

Ez azonban csak olyan téglalap alakt keresztmetszetekre igaz, ahol b >> a.
Mivel ez a legtobb, valds életben eléforduld esetben nem igaz, a (423) képlet
helyett egy modositottat kell hasznalni, amely tartalmaz egy, az a/b arany-
tol fliggd f szorzotényezot:

3V
424 —p>=
(424) T omax =B i

A p paraméter értékét az alabbi tablazatban talaljuk.

alb | 0,25 0,5 1 2 4 6 10 20 50
p 1,008 | 1,033 | 1,126 | 1,396 | 1,988 | 2,852 | 3,770 | 6,740 | 15,65

A tablazat egyes értékei legjobban a £ (a/b) = 0,296 (a/b) + 0,84 linearis
figgvénnyel irhatoak le.

9.1.1.2. Fesziiltségeloszlas kor keresztmetszet mentén

Hatarozzuk meg egy, az 56. abran lathato, » sugart kor keresztmetszetii
tartora a feliiletének érintdjével parhuzamos iranyokban fellép6 csusztato-
fesziiltségek nagysagat leiro 7 (y) fiiggvényt. Azokon a helyeken, ahol
az érintd iranya mar jelentésen eltér az y tengely iranyatol, a t () figgvény
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értéke is jelentésen eltér az adott pontbeli 7, () értéktol. A keresztmetszetre
hat6 nyiroerét jeloljiik V-vel. Ekkor a masodrendii nyomaték a (87) alapjan
I=d‘n/64=r"n/4

y y y

56. abra

Az elsérendii nyomaték és a hlisvastagsag y fiiggvényében valtozik. Els6é
lépésben hatdrozzuk meg a 7 _(p) fiiggvényt, ahol f az adott (2z) hiisvas-
tagsaghoz tartozo kozépponti szg. A koszinusztételt felhasznalva a hiis-
vastagsagot megkapjuk a kdzépponti szég ésa sugér ismeretében:

425) 2z =r* +7° —ercos 1 cos(ﬂ))

(426) 22 \ 27 [1 cos(,B /Zr 251n 2rsm

A korszelet sulypontjanak tavolsaga a kor kézéppontjatol:

(B
27) ) 4rsin (2j

735 =sin(p))

A korszelet teriiletét a befoglald korcikk teriiletének és azon haromszog
terliletének kiilonbségeként kapjuk meg, amelynek két oldala a 5 k6zépponti
sz0ghoz tartozo két sugar, harmadik oldala a korszelet szeldje, amelynek
hossza éppen a husvastagsag:
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428) A= g (B —sin(B))

Ezeket az értékeket behelyettesitve a (418)-ba és a lehetséges egyszertisi-
téseket elvégezve:

7 S1n ﬁ
, M (p-sinp) avsiw( ]

4
ik 2r sm('ﬁj 3r'm

“29) 7, (8)=
4

Mivel a keresztmetszet érint6je csak az y =0, azaz a ff =« helyen parhuzamos

az y tengellyel, mas kozépponti szogekre a teljes nyirdfesziiltség még sza-

mitand6. At ésat vektorok hajlasszoge elemi geometridval szimolhato:

T BT = =m/2— [)’/2 amelybol a teljes nyirdfesziiltség (a cos(n/ 2 — a) = sin(a)
osszefuggest felhasznalva):

T T

430) - (ﬁ): cos[n—’gj i sin(ﬁ)
2 2 2
(431) 4VSin(§J
rf) =
3rm

At () fliggvény maximuma elsd derivaltja zérushelyének megkeresésével
meghatarozhato:

I
(432) , (ﬁ)ZZVcos(zjzo

T

* 3r’m
ahonnan cos(f/2) = 0, amelynek legkisebb pozitiv megoldasa /2 =n/2, azaz
S =m. A tobbi megoldas az ennél 2n-vel nagyobb ¢és kisebb szogek, ame-
lyek azonban ugyanahhoz a husvastagsaghoz, a keresztmetszet stlypontjan
atmento vizszintes tengelyhez tartoznak. Ez pedig éppen a keresztmetszet
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semleges rétege. A nyirofesziiltség értéke itt, az (S =m) helyen maximalis,
értéke (felhasznalva, hogy a tarto keresztmetszetének nagysaga A = r’n):
44 4T

433 -7
#33) 3r't 3 A

Txe ,max

Azt latjuk, hogy az ,  érteke teglalap és kor keresztmetszetre is a V/4
aranynak egy konstansszorosa, amely konstans téglalapra 3/2, korlapra pedig
4/3. Korgyuri keresztmetszetre levezetve a képletet szintén egy V/A4A-val
aranyos kifejezést kapunk, csak ebben az esetben a konstans szorz6 2.

A korlapra érvényes 7 () fiiggvényt at tudjuk szamolni z () alakra.
Ehhez azonban ismerniink kell a () fiiggvényt. Ennek meghatarozaséhoz
elészor a hiisvastagsagot a Pitagorasz-tétel alapjan a kézépponti szoggel
kifejezve és ezt a (425) egyenlet jobb oldalaval egyenldvé téve megkapjuk
az adott y értékhez tartozd kozépponti sz0g nagysagat:

(434) ( @j Ly
2
(435) (2z) =4r* -4y’
436) 472 —4y* =2r*(1-cos(B))
2 2 2 2
437) cos(ﬁ)zl—w— - 2); =2y—2—1
2r r r

A kétszeres szogekre vonatkozd cos(2a) = 1 — 2sin®(a) trigonometrikus
azonossag felhasznalasaval kifejezziik a (431) képletben szerepld sin(f/2)
fliggvényt:

2

@38) 1—25in2(£j Y
2 ro

439) 1—2sin2[§j—2i—;*l

majd ezt be is helyettesitjiik a (431) egyenletbe, amivel kapjuk:

Ly
(440) il TN 4V /_
TE
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Ez az egyenlet matematikailag egy ellipszist ir le. Hasonléan szamolhato
a rxy(y) fliggvény is, amelyre a (438) kifejezés behelyettesitése utan kapjuk:

47 1—y72]
@4 [r‘W[lyzj

T ()= 3r'n 34 r?

Ez az egyenlet matematikailag egy parabolatirle. Az (y) ésaz () fiigg-
vényeket lasd az 56. abran. )

9.1.2. Egyenszilardsagu tarto

Mivel a gyakorlatban a tartokra hat6 hajlitonyomaték altalaban valtozik
a tartd tengelye mentén, a jobb anyagkihasznalas érdekében olyan, valtozo
keresztmetszet(i tartokat alkalmazunk, amelyek sz€ls6 szalara a maximalis
fesziiltség végig Jmeg-gel egyenld. Ezek az ugynevezett egyenszilardsagn
tartok, amelyek minden keresztmetszete egyenértékii veszélyesség szem-
pontjabol.

Valtoz6 keresztmetszet(i tarto esetében a hajlitonyomaték tehat nem
allando, hanem egy M, (x) fiiggvény szerint véltozik a tart6 tengelye men-
tén. Mivel

442) O = ? =0 e

minden keresztmetszetre, O e viszont végig konstans (mivel feltessziik,
hogy a tarté homogén, és az anyaga is mindenhol azonos), ezért az M, -hoz
hasonldéan K sem egy konstans, hanem szintén egy fiiggvény, K(x) szerint
valtozik a tarto tengelye mentén. Ha a valtozas folytonos €s nem tul jelen-
tds, a Navier-képlet ebben az esetben is jo értéket ad.

Tekintsiink egy £ hosszisagu, egyik végén befogott, téglalap kereszt-
metszetli rudat, amelyre a szabad végén egy F nagysagu er6 hat (57. abra)!
Milyen alakura tervezziik a rudat, ha azt szeretnénk, hogy a benne ¢bredé
fesziiltség nagysaga mindenhol O g legyen?
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A TTTITL LT

. 4
'—x>
M, -
My(x
) My(£) = F{
57. abra

Ha a tarto szélességét z-vel, magassagat y-nal, pontosabban z(x)-szel
és y(x)-szel jeldljiik, a masodrendii nyomaték a tengely mentén

3

(443) I(x) = z(x)y (x)

12
mivel a hajlitas tengelye a z tengellyel parhuzamos, azaz a semleges réteg
az xz sik. A sz€lsO szal tavolsaga e(x) = y(x)/2, a hajlitbnyomaték pedig
M, (x) = F x alakban irhato, igy a Navier-képlet a kovetkezé alakot veszi fel:

M, (x) 12Fx  y(x) 6F x
Gmcg = e('x) = 3 = 2
1 (x) z(x)y (x) 2 z(x)y (x)

Ha a tarto szélességérdl koveteljiik meg, hogy konstans legyen, azaz z(x) =z
allandonak vessziik, kifejezhetjiik a tartd y magassagat x fliggvényében:

6F
(445) y(x) Sk konst - v/ x
o-meg z

azaz azt kapjuk, hogy a tartd vastagsaganak egy négyzetgyokfiiggvénnyel
aranyosan kell valtoznia az x koordinata névekedésével (58. abra).

(444)
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X

iy

58. abra

Ha a tarté vastagsagarol koveteljiik meg, hogy konstans legyen, azaz y(x) =y
allandonak vessziik, kifejezhetjiik a tarto z szélességét x fliggvényében:

(446) z(x) = OF x =konst-x

eV
ami egy nulla tengelymetszetii, 6 F/yzameg meredekségli egyenes egyenlete,
ameredekségben szerepld szorzotényezok azonban a tartd tengelye mentén
végig allandok, igy szorzatuk is konstans. Azaz a tarto szélessége lineari-
san kell hogy valtozzon az x fliggvényében, hogy a rajta fellépé maximalis
hajlitonyomaték 0 e legyen (59. abra).

A

59. abra

Ezen az elven késziilnek példaul bizonyos jarmiivek futomiivének a lap-
rugdi is (60. abra). Itt az egyenszilardsagi(hoz kozeli) alakot nem folytonos
kialakitassal érik el, hanem tobb, egymasra helyezett lappal, amelyek egy
vagy tobb ponton vannak egymashoz rogzitve. A konstrukcid egyszertien
eleget tesz az egyenszilardsag kovetelményének, és megfeleld kialakitas
esetében egy lap sériilése ellenére a jarmi még nem ,,il le”, de lengésdina-
mikai hatranyai (konstans, Coulomb-strlédasbol adodo belso csillapitasa,
illetve linearis karakterisztikaja) miatt csak kiilonb6z6 modositasokkal
szokas alkalmazni.
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60. abra

9.1.3. Meretezés hajlitasra és nyirdsra

A hajlitasra és nyirasra val6 méretezés soran altalaban elegendd hajlitasra
méretezni és nyirasra ellendrizni. Azaz el6szor méretezziik a tartot a (174)
alapjan tiszta hajlitasra, majd a kapott keresztmetszeti jellemzok alapjan
megvizsgaljuk, hogy az azokbdl a (418) alapjan szamitott maximalis nyiro-
fesziiltségre igaz-e, hogy r = < T,.,- Hanem, a méretezést meg kell ismételni.

Ez a legtobb esetben azért elégséges, mivel a hajlitofesziiltség maxi-
muma a sz€Is6é szalakban 1ép fol, ahol a nyirofesziiltség nulla; mig a nyi-
rofesziiltség maximuma épp a semleges rétegnél talalhato, ahol viszont
a hajlitofesziiltség nulla.

Abban az esetben viszont, amikor a husvastagsag hirtelen valtozik, mint
példaul az I-szelvény tartdk esetében, eléfordulhat, hogy a két fesziiltség
ugy adodik 0ssze, hogy az anyagra érvényes megengedett fesziiltséget mar
tallépi. Ezért az ilyen keresztmetszetekre ki kell szamolni a hajlito- és a nyi-
rofesziiltség alapjan az ugynevezett redukalt fesziiltséget (o, ), és erre is
ellendrizni kell, hogy o, , < O e legyen.

9.2. A redukalt fesziiltség

A tobbiranyu Osszetett igénybevételeknek kitett tartok ellendrzéséhez sziik-
séges a fellépod o és T fesziiltségek egyiittes hatasanak vizsgalata. Ehhez
a o és T fesziiltségvektorokbol egy fesziiltségelmélet alapjan egy ugyneve-
zett redukaltfesziiltség-értéket (o, ,) allitunk el6, és nemcesak a o,

=0
max meg

ésat_ <t__0Osszehasonlitast végezziik el, hanemao _ <o _ellen6rzésétis.
max meg red meg
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9.2.1. A Mohr-elmélet

A Christian Otto Mohr (1915-1918) német mérnok altal 1882-ben kidol-
gozott elmélet alapjan a redukalt fesziiltség a 6.3. alfejezetben bemutatott
fofesziiltségek segitségével az alabbi modon szamolhato:

(447) O ed, Mohr — 01~ 03

Olyan fesziiltségallapotban, amikor csak a 61. abran lathato kiskockan be-
mutatott irany fesziiltségek Iépnek fel, a (447) az alabbi alakot veszi fel:

(448) o-red,Mohr =N 62 + 472

61. abra

9.2.2. A Huber—Mises—Hencky-elmélet

1903-ban Tytus Maksymilian Huber (1952—1950) lengyel gépészmérndk,
a Lwowi Muszaki Egyetem (ma Lvivi Nemzeti Miiszaki Egyetem) profesz-
szora kozolte el6szor az altala kidolgozott fesziiltségelméletet és az az alapjan
szamolt redukaltfesziiltség-értéket. Mivel azonban cikke lengyeliil jelent
meg, nem keriilt be a nemzetko6zi tudomanyos kéztudatba. Emiatt 1913-ban
az ukrajnai zsido sziiletésii, késobb az USA-ba kivandorolt és ott a Harvard
Alkalmazott Matematikai Tanszékének professzoraként dolgozo Richard
Edler von Mises (1963—-1953) Hubertdl fiiggetleniil levezette az elméletet
¢és abbdl az sszefliggést. Mindkett6jiiktdl fliggetleniil 1924-ben Heinrich
Hencky (1965—1951) német mérnok a Delfti Miszaki Egyetemen dolgozva is
felirta azokat, amelyekre manapsag igy Huber—Mises—Hencky-elméletként
¢és Huber—Mises—Hencky-féle (roviden HMH) redukalt fesziiltségként hivat-
kozunk:
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(449) Oranmvu — \/ % [(0-1 -0, )2 + (O-z —0; )2 + (O-z -0 )2]

A 61. abran bemutatott fesziiltségallapotban a (449) a kdvetkez6 alakot
veszi fel:

450) Oramm = VO~ +37°

9.3. Hilizas vagy nyomas és csavaras

Mig a hajlitas és a nyiras viszonylag jol kezelhetok kiilon-kiilon, mivel alta-
laban ahol a ¢ fesziiltség jelentds, ott a T elhanyagolhato, és forditva, csak
jelent6s hisvastagsag-valtozasoknal kell a redukalt fesziiltséggel ellendrizni
a méretezést, addig az egyideji hiizas (vagy nyomas) ¢s csavaras esetében
ez nem all fenn. A csavardfesziiltség ugyanis a keresztmetszet széElsé sza-
laban maximalis, a huzé(nyomo)fesziiltség pedig a teljes keresztmetszeten
konstans.

A huzas vagy nyomas hatasara ébredd normalis fesziiltség és a csava-
ras altal keltett cstsztatofesziiltség ugyanakkor a 61. abranak megfeleléen
abrazolhato, azaz a redukalt fesziiltség meghatarozasara hasznalhato mind
a (448), mind a (450) képlet. A behelyettesitendd o és 7 fesziiltségértékek
a (22) alapjan szamolhat6é maximalis huzo- vagy nyomofesziiltség és a (247)
alapjan szamolhato maximalis csavardfesziiltség.

9.4. Hajlitas és csavaras

A htizas (nyomas) és hajlitas esetéhez hasonloan a hajlitas és csavaras esetében
is mindig sziikséges valamilyen fesziiltségelméletet felhasznalni a szamo-
lasainkhoz. A csavardfesziiltség ugyanis a keresztmetszet sz¢Els6 szalaban
maximalis, ugyanott, ahol a hajlitofesziiltségnek is maximuma van.

Mivel azonban a fesziiltségek ebben az esetben is a 61. abranak meg-
felel6en hatnak, a redukalt fesziiltség meghatarozasara hasznalhatok a (448)
¢és a (450) osszefiiggések. A behelyettesitendd o és 7 fesziiltségek a (60)
alapjan szamolhat6é maximalis hajlitofesziiltség és a (247) alapjan szamol-
hat6é maximalis csavarofesziiltség.
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Mivel kor keresztmetszetii tartok esetében a hajlitonyomaték (M, )
¢és a csavaronyomaték (T) egymasra mer6leges vektorok, ereddjiik, az ugy-
nevezett redukalt nyomaték (M) vagy idedlis nyomaték (M) egyszertien
szamolhato:

@s1) M, =M +T?
és ezzel a redukalt fesziiltség:
(452) o M,y



Vakat oldal



10. Alakvaltoztato munka

Hasson egy rugalmas testre egy tetszdleges, i darab er6bdl (F, F,,..., F)
és j darab er6parbol (amelyek altal kifejtett forgatonyomatékok M, ML,. ..,
M) allo egyensulyi erérendszer. Azonban terheljik ezeket ugy a testre,
hogy kezdetben F, =0, 1 <k <iés M, =0, 1 <{ <, majd fokozatosan
noveljiik nagysagukat végsé értékiikre tigy, hogy az erérendszer kdzben
végig egyensulyi legyen.

Az igy a testre terhelt egyensulyi erérendszer a test mozgasallapotat
nem, csak alakjat valtoztatja meg. Jeloljiik f,-val azt a tavolsagot, mellyel
az F,_er6 a timadaspontjat onmagdval parhuzamosan elmozditja, és ¢ -lel
azta szoget, amellyel az M, forgatonyomaték sikja a forgatonyomaték-vektor
tengelye koriil elfordul.

Mivel a terhelés megsziinése utan a test visszanyeri eredeti alakjat,
azaz tokéletesen rugalmas, ezért tekinthetiink ra igy, mintha a tamadaspon-
tokban egy D rugoalland6ji rugd tarolna a kiils6 erék munkajat. A munka
definicidja szerint a tarolt munka nagysagat tigy szamithatjuk ki, hogy az F
erd és az altala okozott Ax elmozdulas vektorat skalarisan 6sszeszorozzuk:

(453) W =FAx

Egy tokeletesen rugalmas rugéra haté erd (F)) és annak megnytlasa
(Ax, =€, — ) kozott fennéll az

(454) F, =DAx,

Osszefliggés. Ez a Hooke-torvénnyel ekvivalens egyenlet, hiszen a (30)-ban
példaul hiizas vagy nyomas esetén o = F/A4 és ¢ = Ax/x, azaz a (30) ugy is
irhat6 lenne a konstansok atrendezése utan, hogy

(455) F=AA

0
ahol a D = EA/x jelolést vezettiik be, amelyben mind £, mind 4, mind x,
végig allandd. Vagyis rugalmas testet feltételezve valdjaban a Hooke-torvény



154 MECHANIKA II.

érvényességét (¢s igy a rugd képének helyességét) kihasznalva irjuk le
a deformaciot.
A (454) egyenletet infinitezimalisan kis dx, megnyulasra felirva

(456) dF,= Ddx,
majd mindkét oldalt x -val szorozva (453) alapjan, hogy munkat kapjunk:
457) dW,=dF x,=D x,dx,
végiil mindkét oldalt kiintegralva 0-tol /,-ig, megkapjuk a munka nagysagat:
Ji Jr fz
(458) szj.de:.[kadxk:DJ.xkdxk:Df
0 0
Itt azonban D f, = F,, igy az f, elmozdulast okoz6 F, erd munkaja
(459) W, = _F’vf"
2

Ez megfelel annak, mintha az erdt és az altala okozott elmozdulast, amely
az er linearis fiiggvénye a Hooke-torvény érvényessége miatt (ahol az egye-
nes meredeksége 1/D = x /EA), egy grafikonon abrazolnank, és a munkat
a gorbe alatti teriiletként hataroznank meg (62. abra).

62. abra

Hasonlbéan meghatarozhato egy adott pontban hato, ¢ szogelfordulast okozo
M forgatonyomaték munkaja (63. abra).
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Egy M forgatonyomaték ugyanis kifejezhetd egy k kart, F alapu eréparként
is, ahol

(460) F=-F,=—

A forgatonyomaték hatdsara az F, és F, er6k tamadaspontjai azonos nagy-
sagl, de ellentétes iranyt f tavolsagot mozdulnak el, amelybdl a (459)
¢és (460) egyenletek alapjan a végzett munka

461) W:fif+(—1“})(—f):Mf+Mf:2Mf
2 2 2k 2k 2k

Mivel f<< 1, ezért

2
@62) LY A
Kk ki2
ésmivel p << 1, ezérttg p = ¢, és ezzel a (461) a kovetkezo alakra egyszertisodik:
(463) w-Me
2

amely az Gsszes j darab, az eredeti problémadban feltételezett M, 1 < £ <j
forgatonyomatékot kifejté erOparra igaz:

(464) W, = Mo
2
Ennek grafikus megjelenitését lathatjuk a 62/b abran.
Képezve a
F,
(465) W= ZW +ZW Z f‘ + 3 Moo

(=1 2

Osszeget, megkapjuk a rugalmas testre terhelt egyensulyi erérendszer altal
a testen végzett munkat. Mivel azonban a test rugalmas, a terhelés meg-
sziinésével visszanyeri eredeti alakjat. Ez a terhelés megsziinése utani alak-
valtozas felhasznalhato egy U munkavégzésre, azaz a rugalmas test munkat
képes tarolni. Ezen munka nagysaga azonos, de eldjele ellentétes a terheld
egyensulyi er6rendszer altal végzettével:

(466) U=-w
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amely igaz kiilon-kiilon a normalis és a cstsztatofesziiltségekre is:
(467) U=U,+U, =~(W,+W,)

Ezt a munkat a rugalmas test a benne a terhelés hatasara felhalmozodott
fesziiltségek relaxacioja altal végzi. Valasszunk ki tehat a testb6l egy infini-
tezimalis térfogatelemet! Az erre a dV'=dx dy dz nagysagu térfogatelemre
hato fesziiltségeket jeldljlik az xyz jobbsodrast koordinata-rendszerben o ,
o, és o_, valamint T T _,€s rzy-nal.

A o feszliltség az x tengely irdnyaban egy

(468) dF =c dd=0cdydz

nagysagu htuzoéerének felel meg, amely hatasara az elmozdulas a fajlagos
nyulas (18)-beli definicioja alapjan & dx. Azonban mind az erd, mind az el-
mozdulas folyamatosan valtozik, a munkavégzés alatt egyik sem allando,
ezért a munka nem szamolhat6 kozvetleniil ezek szorzataként. Egy ilyen
kozbensé allapotra, amikor 0 <o <o, ., az elmozdulas értéke de, dx.
Ezek szorzataként mar felirhato egy dU__elemi munka nagységa, amelyre

(469) dU, =o dydzde dx =0 de dV
adodik. Mindkét oldalt kiintegralva megkapjuk a bels6 er6k munkajat:

470) U, =[dU, = Tadedgx
0

Mindkét oldalt leosztva az elemi térfogattal bevezethetjiik a fajlagos rugal-
mas alakvaltozasi energia, vagy mas néven energiasiiriiség fogalmat:

@471) ung—;:j%zzqd‘sx :EIaxdgx

ahol felhasznaltuk a Hooke-torvényt is, és hogy a Young-modulusz alland6
az egész testre. Az integralt elvégezve kapjuk:

2 2
:ng _0é&. _O

> 2 2 2F

Hasonloan felirhaté a nyirofesziiltségek hatasara keletkez6 fajlagos rugal-
mas alakvaltozasi energia:

472) u

U. ¢ Ty Gyl 1.7 72
Wau:w;ﬁ%%ﬁq@mfguig}i
0 0

o 2 2 2G
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Mivel a munka additiv mennyiség, felirhatjuk a térfogatelem teljes energia-
stirtiségét:

474) U=U, U, =Uy T U, +U, U, +U, +U, =

1
5 (o;_gx +0,6,+0,6,+Y, T +V T+ y}zrﬁ)

amelyben a normalis fesziiltségekkel ardnyos tagokat u_-val, a csusztato-
fesziiltségekkel aranyos tagokat u -val jelolve €s mindkét oldalt kiintegralva
a (471) egyenlet egy masik alakjat kapjuk:

475) U=U,+U, :judV:j(uc,+u,)dV

amely jelentésében megegyezik a (465) egyenlettel, csak ott az erdk, el-
mozdulasok, forgatonyomatékok és szogelfordulasok diszkrét volta miatt
szummazas, mig itt a fesziiltségek folytonos jellege miatt integralas szerepel.

Ezzel gyakorlatilag atskalaztuk a 62. abrat, amely az uj valtozokban
a 64. abra szerint néz ki.

| ¢ /a | Wi /b
Ye [~~~
¢
111
Ok o T¢ T
64. abra

Valasszunk ki egy konkrét erét és egy konkrét forgatonyomatékot, jelol-
jik ket F-fel és M-mel, az altaluk okozott elmozdulast és elforduldst f~fel
és p-vel, és foglalkozzunk most csak ezek hatasaval. A (472)-ben és (473)-ban
kapott eredményeinket felhasznalva:

2
o’ 7

Uu=—-
2F 2G

A (476) egyenletet kiintegralva a tarto teljes keresztmetszetére megkapjuk
a tartoban tarolt teljes bels6 munkat:

476)
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@77) U= judV j )dV+j )V

Az els6 tag a normalis iranyt er6k munkajat, azaz a hiizas (nyomas) vagy
hajlitas hatasara felhalmozott munkat jelenti, a masodik tag pedig a csusz-
tatofesziiltségek, azaz a nyiras és a csavaras hatasara felhalmozottat. Mivel
huzas vagy nyomas esetében o = F/A4, hajlitas esetében pedig o = My/I, mig
nyirasra t=V(x) S(v)/ I 2 z(y), csavarasra pedig = Ti r/Ip, a (477) akovetke-
z6képpen fejthetd ki (allando keresztmetszetet feltételezve és a dV = A4 dx
helyettesitést elvégezve):

7 dx

2 £ 2 ' 2 2 ' 2
@78) U = jF (")dx+jM )4 . dx+ijdx+jT Y.

2E4 o 2EI 0 2GI*4z%(y) N2Gl
Ha a rugalmas moduluszokat az egyes tartokra allandonak tekintjiik (vagyis
anyagukat homogénnek feltételezziik), és mivel a keresztmetszetet allan-
donak vettiik, ezek kiemelhetdk az integral elé. A harmadik integralban
bévitiink A-val, hogy késébb a tobbi taghoz hasonld alaku kifejezést kap-
junk. Tovabba, huzas (nyomas) esetében a 2. fejezetben lattuk, hogy a tarto
egyes dx hossziisagu elemeire haté nyomo- vagy huzoerd allando, hason-
l6an csavaras esetében a csavaronyomatékhoz, ezért az elsd és a negyedik
integral esetében az erd és a csavaronyomaték is kivihetd az integral elé,
amivel a (478) egyenlet a kovetkez6 alakra egyszertisodik:

M()Ayzdx+ ! sz(x)Sz(y)Ade jA ride

(479)(]* dx 2G A5 1*42%(y) 2G1;

2E Ay 2E1?

A masodik integralban azonban az 4 y? kifejezés éppen a masodrendii nyo-
maték, a negyedik integralban pedig az A * a polaris masodrendii nyomaték,
amelyek szintén kivihetoek az integralas elé, és az integral el6tti konstans
nevezdjében az [ E hajlitémerevség jelenik meg:

[ M2 1t S() o
(480)U_—jdx 25T (X)dx+2GA£V( Ta20) " 201 !dx

P

Az ¢ls6 és a negyedik integralt elvégezve megkapjuk az F erével huzott
(nyomott), illetve a T nagysagu csavaronyomatékkal csavart tartoban fel-
halmozott munkat:

F*¢

(481) Uhuzas(nvomas) 2 E A
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T/

482) y -1t
csavaras 2 G]p

Mivel hajlitas esetében a hajlitbnyomaték a tartd tengelye mentén altalaban
valtozik, ezért a masodik integral elvégzéséhez az esetek tilnyomo tobb-
ségében sziikséges az M(x) fliggvény meghatarozasa.

A harmadik integralban szerepl6 S*(y) 4>/ I* 4 Z*(y) tort csak a kereszt-
metszet alakjatol, illetve a nyirderdk iranyatdl fiiggd dimenzidomentes szam,
amely ezért kihozhat6 az integralas elé. Jeloljik ezt a tényezot f-val. A nyi-
roerd hatasara felhalmozott munka meghatarozasahoz azonban tovabbra is
sziikséges a V(x) fliggvény konkrét alakjanak ismerete:

B
(483) Unpie =561 '([V (x)dx

A f tényez6 értéke négyzetre 6/5, korre 32/27, I-szelvényre 21/10.

10.1. Betti-tétel

Adott egy rugalmas test. Terheljiink ra két egyensulyi erérendszert, jelol-
jiik ezeket JF -gyel és JF -vel. Ha el6szor az JF, erérendszert terheljiik ra,
ez valamilyen moédon deformalja azt, W, nagysdgii munkat végezve rajta.
Ha ezutéan raterheljiik az JF, erérendszert, az is végez a testen egy ¥, nagy-
sagl munkat. Azonban ekkor az I, erérendszer is végez még munkat,
jeloljiik ezt W, -vel.

Ha a testre forditott sorrendben terheljiik ra a két erérendszert, akkor
elészor az I, er6rendszer végez egy W, nagysaga munkat, majd az I,
erérendszer egy W, nagysaga munkat és az Jf, erérendszer egy W, nagy-
sagli munkat.

A Betti-tétel® értelmében az Gsszes végzett munka fiiggetlen attol, hogy
az erérendszereket milyen sorrendben terheljiik a testre, azaz

(484) W AW+ W, =W +W, +W,,
és igy
(485) w,=Ww,

6 Enrico Betti (1823—1892), olasz matematikus.
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azaz két er6rendszernek egymas hatasara végzett, igynevezett idegen munkaja
egyenld. Az energiamegmaradas miatt ez érvényes a belsé erék munkaira is:

(486) U,=U,

Térjiink vissza a (480) egyenlethez, és irjuk azt fel az I, és az I, er6-

rendszerekre is:
l l 2

1 1 [
487) —W =U = dx + M2 (x)dx dx + —— [ dx
(87) 2EAJ. 2E1) 1) *2641 F) 2G1p-([
1 l 1 ' TZ L
488) W =U = jdx M3 (x)de + —— [177(x)dr + —2— [ dx
EA 2E1) 2G4y 2G1, 4
mig az idegen munkakat a
(489) W, =W, =U,=U, =
L L TT l
I M, ()M, (x I det o[
2EA 2E1 2G1,

egyenlet irja le.

10.2. Maxwell-tétel

A Maxwell-tétel” valojaban a Betti-tétel specialis esete. Azt mondja ki, hogy
az er6hatas helye ¢és az alakvaltozas helye felcserélhetd.

Terheljiink meg egy kéttdmasz tartot egy F, erével. Ennek hatésara
a tarté az F, er6 timaddspontjaban lehajlik. Ezutan terheljiik meg a tartot
egy F, erével, aminek hatdséra a tart6 az F, eré tiamadaspontjdban tovabb
hajlik, a plusz lehajlas értékét jeloljiik ylz-vel Ekkor a W, idegen munka
nagysaga I, y , lesz.

Ha az er6ket azonos tamadaspontokban, de forditott sorrendben terhel-
jiik, az F, er6 hatdsara az F, er6 tamadaspontja lehajlik. Az F, erd raterhelése
utdn annak tdmadéaspontja tovabb hajlik, jeloljiik ezt y, -gyel. A W, idegen
munka nagysaga tehat /) y, . A két raterhelési sorrendet szemlélteti a 65. dbra.

7 James Clerk Maxwell (1831-1879), skot matematikus, fizikus.
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e
P———F %

65. abra

A Betti-tétel értelmében a két idegen munka megegyezik, azaz:
(490) W =Fyyp =1y, =Wy,

Ha F| = F,, akkory =y,

10.3. Castigliano-tételek

Hasson egy rugalmas testre egy tetszleges, i darab er6bdl (F, F,,..., F) és
darab eréparbol (amelyek altal kifejtett forgatonyomatékok M, ML,,..., Mj)
allo egyensulyi erérendszer, amelyet jel6ljiink Jf-fel. A kiils6 er6k munkéja
ezek fiiggvénye: W= W(F,F,, ..., F,M,M,, ..., MI.).

Valtoztassuk meg az i-edik erd nagysagat egy infinitezimalis nagysagi
dF -vel. Ekkor a kiils6 er6k munkdjanak megvaltozasa

(491) dw = %dFi
oF,

lesz. Ha az erdket ¢és forgatonyomatékokat forditva terheljiik ra a testre,
azaz el6szor dF -t, majd Jf-et, a dF, er6 teljes munkdja a sajat és az Jf erd-
rendszer idegen munkajabol adodik Gssze:

1
(492) AW = dfidF; + fdF;

A masodrendiien kicsiny tagot elhanyagolva:
(493) dw = fdF,
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amely egyenletnek a bal oldaldba a (491) egyenletet behelyettesitve €s dF -vel
egyszerisitve kapjuk:

(494) a—WdE = f.dF,
oF;
ow
(495) e ?F,v

A (495) egyenlet az els6 Castigliano-tétel,* amely azt mondja ki, hogy a kiilsé
erérendszer munkéjanak F erd szerinti parcidlis derivaltja megadja az F,
eré tamadaspontjanak er6 iranyt elmozdulasat.

A masodik Castigliano-tétel levezetéséhez valtoztassuk meg a j-edik
forgatonyomaték nagysagat egy infinitezimalis nagysagu de-vel. Ekkor
a kiils6 er6k munkajanak megvaltozasa

ow
dw=2"—dM,
(456) oM,

J

lesz. Ha az erdket ¢és forgatonyomatékokat forditva terheljiik ra a testre,
azaz el6szor de-t, majd F-et, a M, forgatonyomaték teljes munkaja a sajat
és az Jf erbrendszer idegen munk4jabol adodik dssze:

497) MV:%d@¢M5+%¢M,

A masodrendiien kicsiny tagot elhanyagolva:
(498) dW = p,dM,

amely egyenletnek a bal oldalaba a (496) egyenletet behelyettesitve és d]\/fl.-Vel
egyszerlisitve kapjuk: ‘

ow

(499) ——dM, =¢p,dM
om, T
oW

8 Carlo Alberto Castigliano (1847-1884) olasz matematikus, fizikus.
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amely a masodik Castigliano-tétel. Ez azt mondja ki, hogy a kiils6 erérend-
szer munkajanak M, forgatonyomaték szerinti parcialis derivaltja megadja
az M, forgatonyomaték tamadaspontjanak szogelfordulasat.

Lassunk egy konkrét példat a Castigliano-tételek hasznalatara.
Hatarozzuk meg a 66. abran lathato kéttamaszu tarté B keresztmetszeté-
nek lehajlasat és szogelfordulasat!

A C
B
L L L
1 . 1 £ 1
66. abra

A Castigliano-tételek alkalmazasahoz azonban egy, a B keresztmetszetben
hato koncentralt erd, illetve koncentralt forgatonyomaték szerint kellene
parcialisan derivalnunk. Mivel ott ilyenek nincsenek, ezért hozzaadunk
a B keresztmetszetben a rendszerhez egy F, igynevezett segéder6t és egy
M,, ugynevezett segédnyomatéekot, amelyeket az utolsé 1épésben nulldva
fogunk tenni (67. abra).

Fo
A C
QMO
L |,
1 P 1 ] 1
67. abra

Vegyiik fel a koordinata-rendszeriink origdjat a B keresztmetszetben tigy,
hogy az x tengely a tarto tengelye legyen. Mivel a hajlitonyomaték additiv
mennyiség, ezért kiilon-kiilon meghatarozva a q megoszlo erérendszer,
az F, koncentralt eré és az M koncentralt forgatonyomaték hajlitonyomatéki
fliggvényét, ezek Osszege fogja adni a teljes szerkezet M(x) fiiggvényét.

El6szor hatarozzuk meg az A és a C keresztmetszetbeli reakciderdket
a nyomatéki tétel segitségével! Mivel a szerkezet egyensulyban van, ezért
minden pontjaban az dssz-forgatonyomaték nulla.
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Tekintsiik eldszor ugy a rendszert, mintha csak a q megoszld erd-
rendszer hatna a tartora (68. abra). A q egyenletesen megoszld erérendszer
helyettesithet6 a tamadasvonal kdzéppontjaban egy O = 2{g nagysagu kon-
centralt erével. A nyomatéki tétel segitségével kiszamithatok a kényszereken
fellépd reakcioerdk:

(s01) M, =0=—(0+2(F.,
(502) R
2
A B C
AE @ j @ Ek
Fa Q Fc
4 4
(F [
M, -
Q 77777777777777777 /
4
68. abra

Mivel a fiiggdleges iranyt erdk dsszege 0, ezért
(503) FytF.=0

(504) F,==

Ezt az eredményt természetesen megkaphatjuk a C keresztmetszetre felirt
nyomatéki tétel segitségével is. A hajlitonyomaték a megoszld erérendszer
negativ ¢és a kényszereken hato (koncentralt) reakciderék pozitiv hajlitonyo-
matékanak dsszege. A megoszlo erérendszerbdl szarmazo hajlitonyomaték-
-jarulék maximumat a B keresztmetszetnél veszi fel, értéke itt

(505) [T

h,B.,g 4
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A koncentralt reakcioerdkbol szarmazo hajlitonyomaték-jarulék szintén a B
keresztmetszetnél maximalis, értéke

(506) My gp=C0F,=LF

A kiils6 terhelé megoszl6 erérendszerbdl szarmazo hajlitdbnyomaték-jarulékot
¢s ezen erérendszer hatasara a kényszerekben fellép6 reakciderdkbol szar-
mazo6 hajlitonyomaték-jarulékot a 68. abran kiilon-kiilon abrazolva lathatjuk.

A megoszld erérendszerbdl szarmazd hajlitonyomaték-jarulék fiigg-
vénye az A és a B, valamint a B és a C keresztmetszetek kozott:

( ) _q(x+€)2 :_(x—i-ﬁ)zQ

(507) M, (x) === o
ge-1 (=170
M . (x)=— =
(508) NEY 5 =

alak, mig a koncentralt reakcider6kbol szarmazo hajlitonyomaték-jarulék
fliggvénye az A és a B, valamint a B és a C keresztmetszetek kozott:

(509 M )= (e 0)F, =220
510 M= )F, =~ 250

A hajlitonyomatékot a tartd tengelye mentén leir6 fliggvények a tartd két
szakaszara tehat:

(1) Ml(x):Mql(x)+MF1(x): _(x+4i)2Q + Q(x2+ ﬁ) :_%);2 -I—%

(512) Mz(x)quz(x)+MF2 (x)= _(x —4€€)ZQ _ Q(xz— f) _ _Q4);2 +%

Azt latjuk tehat, hogy a megoszlo erérendszer hajlitonyomaték-jaruléka
a teljes tartdon azonos.

Tekintsiik most gy a rendszert, mintha csak az F koncentralt erd
hatna a tartéra (69. abra). A nyomatéki tétel segitségével kiszamithatok
a kényszereken fellép6 reakcioerok:

(513) M,=0=—(F, +2(F,
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(514)

69. abra

Mivel a fiiggdleges iranyt erdk dsszege 0, ezért

(515) F,+F.=F,
F,
(516) F, +7°:F0
F,
(517) F, :7"

Ezeket az eredményeket természetesen megkaphatjuk a C keresztmetszetre
felirt nyomatéki tétel segitségével is. Igy a B keresztmetszetbeli hajlito-
nyomaték (akar jobbrol, akar balrdl szamolva):

LF

0

(518) Mn =t = o=

A hajlitonyomatéki abra linearis (a tartd két szabad végénél nulla értékkel),
hiszen koncentralt er6rél van sz6. Mivel az M(x) fiiggvénynek torése van a B
keresztmetszetnél, a két szakasz egyenletét kiilon-kiilon kell meghatarozni.
Jeloljiik a bal oldali, A keresztmetszethez kozelebbi részt M (x)-szel, a jobb
oldali, C keresztmetszethez kdzelebbi részt M (x)-szel. Ugyanazt a koordi-
nata-rendszert felvéve, mint az el6bb, a két egyenes egyenlete:
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619 My ()= G+ )2
(520) M ()= —r—0)2

Végiil tekintsiik Gigy a rendszert, mintha csak az M, koncentralt hajlito-
nyomaték hatna a tartéra (70. abra). Ekkor a nyomatéki tétel segitségével
a kényszereken fellép6 reakcioerok:

(521) M,=0=M,+2(F,
M
522 a0
(522) c Y,
A B C
2
B o Mo [y
¢ ¢
M,
2
M,, - -
_M,
2
70. abra

Mivel a fiiggdleges iranyt erdk dsszege 0, ezért

(523) F +F.=0
Fo- Mo
(524) AT,
MO
(525) s Ev

Ezt az eredményt természetesen megkaphatjuk a C keresztmetszetre felirt
nyomatéki tétel segitségével is. Igy a B keresztmetszetbeli hajlitonyomaték
(akar jobbrol, akar balrol szamolva):
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M, M

(526) M,y =+F, =0—%="20
= 2 2

M M
527 M =H(F. =(—%=_"2¢
( ) h,B,—> (¢ Zf 2

A hajlitonyomatéki dbra linedris, a B keresztmetszetben egy —M nagy-
sagl ugrassal. Ismét az eddig hasznalt koordinata-rendszert felvéve a két
egyenes egyenlete:

29 M()=(r0)2e
(529) M, (x)=(x- z)%

Mindezek alapjan a harom hajlitonyomaték-komponens 6sszege kiilon az 1-es
és kiilon a 2-es szakaszra:

F, F
(530) Ml(x)z—x22+fg+x—°+g_°+x%+%
40 "4 T2 T2 200 2
F, F, M, M
43D Mz(x):fx22+fgfx_°+f_0+x_0,_0
40 4 T2 2 20 2

Nézziik el6szor az 1-es tartomanynak a hatasat. Ehhez el6szor szamitsuk
ki az M *(x) fiiggvényt:

2 2 FZ F2f2 MZ 2 2
3 Mi(x)=L v+ L ey oo Jo O Mo o My O n
60 16 - 4 4 4 8
_QE)xz_QFoxz_Qlwzox3_QMoxz+QFo£x+QF0€2+QM0x+
41 4 40 40 4 4 4
+QM0,€+FOZL/X+1~;)MOx2+F0M0x+1~;,M0x+1~;)M0€+M_§x
4 2 2¢ 2 2 2 20

A W, bels6 munkat az M *(x) fliggvénynek a tart bal széle és a B kereszt-
metszet kozotti, £ hosszlsagl szakaszon vett hatarozott integraljanak ki-
szamitasaval tudjuk meghatarozni (egy 1/2/E faktorral beszorozva):
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633) W= T Q \x* (_QF OM,)x*
' J, “21E|\1662 )5 40 40* )4

{F_@M& _Q_Z_QFO_QM“FOMOJ%+

4  40° 8 4 4/ 2/

J[OFL OM, Ft FM, FM, M;
4 s 2 T2 T T

+
16 4 4 4 4 2

0
[Q_g FC My ORC OM K MofH
£

21E
oM, 0? . M2 QR OM 0 FR0° FM 0 F M
12 6 8 8 4 4 4
M2 . 00 . F2 0 . Ml L9k, A . oM 1 . F,M 02
4 16 4 4 4 4 2

20 QF,0C QM0 FR MM QP QF,C
34y W =L (@0 ORE OM L EC Mt QP ORC
80 16 16 2 12 24 12

A Castigliano-tételek alapjan a kérdéses keresztmetszet (jelen esetben a ,,B”)
lehajlasa és szogelforduldsa a /¥, belsé munkénak az adott keresztmetszetben
haté koncentralt erd (az ) €s koncentralt forgatonyomaték (az M) szerinti
parcidlis derivaltja. Mivel F és M az eredeti feladatban nem szerepelt, csak
mi adtuk hozza a rendszerhez ezen derivalas elvégezhetoségének érdekében,
ezért a derivalas utan ezek helyére nullat helyettesitiink:

ow, 1 A F€3 0 M 0* QrF
(535) f, = 1| = Q [ 0 + 10 _ 0 _
OF, | Fy=0 2IE 6 12 6 8
My=0
RO M M ! 0 . or . M0’ _
2 4 4 2 4 2 g0
M,=0
1 Q_ﬁ_Q_z_Qﬂ or 1 (500°) 500
T2IE 12 8 4 ) 20E\ a8 961 E
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(536) O oM, |no 20E 16 6 12 8

M,y=0

am| 1 (Q€2+MOEQ€2Q€2

Fy=0
My=0

{ecer ot o0y 1 sor so

2 2 / 02 2
_RC R Mt Myt QU Fy
4 4 2 2 4 2

T2/E\ 16 12 8 4 ) 21E 48 961K

Hasonldan végigszamolva a masik tartorészre kapjuk:

_5010°
(537) /s =S¢k

-5010°
538 ¥
39) ATy

A B keresztmetszet lehajlasat és szogelfordulasat a két fél tartobol szamolt
fés o értékek Osszegeként kapjuk:

(539) f=h+/=

5000 5000 500
96/E 961E 48IF
500 500
96IE 961F

(540) P=p +@, =

Az eredményben nem meglepd, hogy f, = f,, hiszen a B keresztmetszet pont
a tart6 szimmetriatengelyében helyezkedik el, ezért a két oldalnak ugyan-
akkora jarulékot kell adnia a lehajlasahoz.

Szintén érthetd, hogy példank esetében a ¢, = —¢, eredménynek kel-
lett kijonnie: a tartd kozépso, szimmetriatengelyére eso keresztmetszetérol
intuitiven is latjuk, hogy ¢ = 0, hiszen ez a keresztmetszet az egyenletesen
megoszlo terhelés hatasara is vizszintes lesz: nem fordul el, csak lehajlik.



11. Statikailag hatarozatlan szerkezetek

Ahogy a statika targyalasanal lattuk, egy szerkezet szabadsagi fokainak
kényszerekkel vald lekotése feltétele annak, hogy az adott szerkezetet sta-
tikailag hatarozottnak nevezziik. Ha azonban a kényszerek nem pontosan
annyi szabadsagi fokot kotnek le, mint amennyi a szerkezetnek van, hanem
tobbet, a szerkezetet statikailag hatarozatlannak nevezziik (tovabbra is fel-
tételezve, hogy a szerkezet egyenstlyban van). Ebben az esetben ugyanis
az egyensulyi egyenletek nem elegenddek a reakciderék meghatarozasahoz.

Tekintsiink egy egyszert, prizmatikus rud alaka tartot. Kiterjedt sikbeli
szerkezet 1évén harom szabadsagi foka van. Ha mindkét végén csukloval
tamasztjuk ala, azzal 6sszesen négy szabadsagi fokot kétiink le, ami eggyel
tobb, mint a szerkezet szabadsagi fokainak a szama, ezért ezt statikailag
egyszeresen hatarozatlan szerkezetnek nevezziik. A négy szabadsagi fok
lekotése miatt négy reakciderd (a két csukloban fellépd vizszintes €s fliggo-
leges iranyt er6k) meghatarozasa sziikséges. Azonban felirva a fiiggéleges,
a vizszintes iranyu er6k 0sszegének zérus voltara és a két csuklon fellépo
forgatonyomatékok zérus voltara vonatkozo egyensulyi egyenleteket, azt
talaljuk, hogy az egyenleteink nem adnak megoldast, mivel az igy felirt
négy egyenlet linearisan dsszefiiggo.

Sziikséges tehat valamilyen mas modszert alkalmazni ezek meghataro-
zasahoz. Jelen jegyzetben csak az ugynevezett erdmodszert fogjuk targyalni
egyszeresen hatarozatlan szerkezetekre, de az elv altalanosan alkalmaz-
hato bonyolultabb és tobbszordsen hatarozatlan tartokra is. Az igynevezett
elmozdulasmddszerrel, amely egy masik, azonos eredményt add eljaras
a reakcioer6k meghatarozasara, itt nem foglalkozunk.

11.1. Gorgé elhagyasa

Az erémodszer elvét a kovetkezOkben egy, a végén gorgdvel alatamasz-
tott befogott tartéra, azaz egy egyszeresen hatarozatlan szerkezet esetén
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vizsgéljuk (lasd 71. abra). Legyen a tart6 hossza £, €s hasson ra fligg6le-
gesen a befogdstol £, tdvolsagra egy F, erd.

4

:ﬂ F,

"2 {0 ¥y

a A
71. abra

Elsé 1épésben a tartot statikailag hatarozotta kell tenni. Ehhez eltavolitunk
egy szabadsagi foknak megfeleld kényszert. Az igy kapott tartot torzstartonak
nevezziik. Jelen esetben kétféleképpen valaszthatunk: vagy egyszeriien a gor-
g6t tavolitjuk el, vagy a befogast kicseréljiik csuklora. Valasszuk az els6t.
Eltavolitjuk tehat a gorg6t, és két kiillonbozo terhelésre hatarozzuk meg
a torzstartd hajlitonyomatéki abrajat (72. abra).

1. Csak az eredeti terhelést figyelembe véve. Jeloljiik az ezt az esetet
leiré hajlitonyomatéki fiiggvényt M (x)-szel.

2. Az cltavolitott kényszer helyére egy ,,1” nagysagli er6t mint
kiils6 terhelést téve (amit abban a mértékegységben kell
szamolni, amelyben a masik tartdt). Jeloljiikk az ezt az esetet leirod
hajlitonyomatéki fiiggvényt m (x)-szel.

. i
3 Tl[kN]

£ 0 {'70

4

LLLLLLLLLLLL
-

g

€o-1 [kNm]

-4, F,

72. abra
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Ezutan felirjuk mind az M (x), mind az m(x) fliggvény konkrét alakjat
a tartd mentén gy, hogy a koordinata-rendszert azonosnak valasztjuk mind-
két esetben. Jelen esetben célszerii az origdt a befogashoz felvenni. Ekkor

(541) Mo(x):(x—él)ngl:(x—él)Fl, ha O<x<f,
1

és

(542) M,(x)=0, ha ¢, <x</,

valamint

(543) mo(x):(x—ﬁo)%:(x—ﬁo), ha 0<x</,

0

A helyettesitett kényszer helyén fellép6 F. reakciderd nagysiaga ezek isme-
retében a kovetkez6 mdodon hatarozhaté meg:

(544) F.= _%

ahol az integralast a tarto teljes hosszan kell elvégezni. A szamlalo a (488)
alapjan a terhel6 erérendszernek a helyettesit6 erén végzett idegen munkaja,
a nevezd pedig a (489) egyenlet szerint a helyettesité erdé sajat munkaja.
A két munka hanyadosa megmutatja, hogy a reakcioerd a helyettesit6 eré
hanyszorosa: mivel a helyettesitd erét egységnyi nagysagunak valasztottuk,
ezért a szamolas végén kozvetleniil a reakciderd nagysagat kapjuk meg.

Az M (x) és m (x) fliggvények azonban két tartoményt hatiroznak meg
x-ben: 0 <x < ¢ és £ <x <{. Ezekre kiilon-kiilon kell elvégezni az integ-
ralast, majd az eredményeket 6sszeadni:
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e e me
(545) F=-t 4 )
[ ma () e+ [ (x)av

4

o) S— N

(e 0)F (e € )ax+ fo(e— )

l
J.(x*ﬁo)2 dx
0
4
F [x* —xt, —xt, +£¢, dx
0 _
(o -

[**-2xt,+ ) ax

amely, mivel F/, £ és £, mind ismert, mér kiszamithato. F ismeretében pedig
mar felrajzolhaté az eredeti szerkezet nyirderd- és hajlitonyomatéki abraja
is: a gorgét az F_erdvel helyettesitve megoldjuk az igy kapott kéttamaszl
tartot, és a szamolds végén F -t a gdrgdn fellépd reakciderdvel azonositjuk.

11.2. Befogas helyettesitése csukloval

Azonban helyettesithettiik volna a befogast is csukloval, az is az eredeti
feladat torzstartdja lenne. Ekkor egy ,,1” nagysagi forgatonyomatékot kell
hozzaadni a rendszerhez a csuklonal, hiszen a fal egy forgatonyomatékkal
kot le tobbet, mint egy csukld (73. abra).
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1 [KNm] ﬂ F,
"N
& LS

£o
73. abra

y
L]

Felirva a torzstarton a forgatonyomaték nulla voltat a csuklora vagy a gorgore,
valamint a fliggbleges iranyt er6k osszegének nulla voltat mind az eredeti
terheléssel a helyettesitett 1 nagysagu forgatonyomaték nélkiil, mind csak
a bevezetett 1 nagysagu terheléssel, meghatarozhatjuk a kényszereken fel-
1épd reakcioerdket. Ezek alapjan fel tudjuk rajzolni az M (x) és az m (x)
fuggvényekkel jellemezhetd hajlitonyomatéki abrakat, amelyeket jellemzo
fuggvényeket egy koordinata-rendszerben felirva és az (544) egyenlet sze-
rinti integralt elvégezve (ha a hajlitobnyomatéki fiiggvények valtozasa miatt
sziikséges, a tarto egyes szakaszaira kiilon-kiilon) megkapjuk a befogasnal
fellép6 forgatonyomaték valddi értékét. Ennek ismeretében ismét felirva
a torzstartora, mint kéttamaszu tartéra, a forgatdnyomaték nulla voltat
a csuklora vagy a gorgére (az elébb megkapott forgatonyomatékot kiilsé
terheld koncentralt forgatonyomatékként kezelve), majd a fiiggbleges ira-
nyu erék dsszegének nulla voltat, a kényszereken fellépo reakcidoerék meg-
hatarozhatoak.

A két modszerrel, azaz egy gorgd elhagyasaval vagy a befogas csuk-
l6val vald helyettesitésével kapott eredményeknek meg kell egyezniiik.

11.3. Megoszl6 erérendszer kezelése

Ha egy tarté megoszld erérendszerrel és koncentralt forgatonyomatékkal
is terhelt, a megoldas menete hasonld. A 74. abran lathato tartonak harom
szabadsagi foka van, mig a fix csukl6 és a két gorgd négyet kot le, a szerke-
zet tehat statikailag egyszeresen hatarozatlan. A torzstartot egy szabadsagi
fokot lekoto kényszer, azaz az egyik gorgo elhagyasaval kapjuk, mivel a fix
csukld gorgdvel vald helyettesitése elmozdulo szerkezetet eredményezne.
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Valasszuk a B keresztmetszetnél talalhato gorgét. Ezt egy 1 nagysagi erével
helyettesitve megoldjuk a kapott kéttamaszi tartot (75. abra).

Y
A Tl[kN] \&‘

A C

{1 fz 53 54

-

75. abra

Felirva az A ¢és a C keresztmetszetekre a forgatonyomatékok nulla voltat
(mivel egyensulyban vagyunk), két egyismeretlenes egyenletet kapunk,
amelyekbdl F, | és F. meghatirozhato:

(546) M, =0=(£,+20,)1-(¢,+£,+£,+L,)F,
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(547) Mo=0=—((,+0,)1=(¢,+0,+(,+10,)F,,

A hajlitonyomaték maximalis értéke, amely a B keresztmetszetnél 1&p fel,
ezekbdl meghatarozhato:

(548) Mhl:_(fl+€2)'FA12_(K3+ﬂ4)FCl

Felvéve egy koordinata-rendszert, az egyes szakaszokon a hajlitobnyomatéki
fuggvények felirhatok:

(549) m, (x)=m,(x)=—x Ml
{oaplls
() [My|
(550) m3(x)*m4(x)*(x_(€1+€z+f3+€4))7
Sl
Ezutan oldjuk meg a torzstartot az eredeti terheléssel (76. abra).
M
F
A B C
L) | L]
1 7

1 1 1
1 1> 43 £y

76. abra

Itt azonban meg kell hatarozni a koncentralt F er6bdl, a megoszl6 q erérend-
szerbdl és a koncentralt M forgatonyomatékbol adodo hajlitonyomaték-jaru-
1¢kokat is. Additiv mennyiségrol 1évén szd, végezziik el ezeket kiilon-kiilon.

Csak a koncentralt F er6t figyelembe véve (77. abra) ismét felirhatjuk
a kéttamasz tartd A és C keresztmetszeteire a forgatonyomaték nulla vol-
tat, amelybdl F, és F. azonnal adodik:

(551) M, =0=—0,F+((,+0,+0,+(,)F,
(552) Mo=0=(0,+0, +0,)F —(¢,+0,+0,+0,)F,
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. c
4 kS

Fa Fc

4 0 13 n

77. abra
A maximalis hajlitonyomaték az F er6 tamadaspontjanal 1ép fel, értéke:
(553) M, =(,F, =(t,+0,+1(,)F,

Felvéve ugyanazt a koordinata-rendszert, amelyet az m(x) fiiggvények fel-
irasanal mar hasznaltunk, felirhatéak a hajlitonyomatéki fiiggvények:

M
(554) M, (x)= x‘[—hz‘
1
(555) Moy (x)= Moy (1) = Moy ()= ~(r— (0, 4.0, + 0, 4.0, )— el
2F 3F 4F 1 2 3 4 fz +€3 +£4

A megoszl6 erérendszer hajlitonyomaték-jaruléka két komponensbdl all:
maganak a megoszl6 erérendszernek a parabolikus és a tamaszokon fellépd
reakciderdknek a linearis jarulékabdl (78. abra).
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A B (€
x& A 3
Faq Fc,

78. abra

El6szor megoldva a kéttamasz tartot, a kényszereken fellép6 reakciderdk
meghatarozhatoak:

,
(556) M, =0=—(r, +£4)q[51 0, +%)+(€1 T L),

I,
(557) MC:O:—(€3+£4)q( ;

4j+(€1 +4,+4, +€4)FAq

A B keresztmetszetben a hajlitonyomaték értéke balrdl szamolva:

(558) M, =(t, +0,)F,
amelybol két szakaszra a hajlitonyomatéki fliggvény felirhato:
M|
M, (x)=M, (x :x|—h3
(559) 1o (X) =M, (x) Y3

A masik két szakaszra kiilon kell bontani a megoszl6 erérendszer és a kon-
centralt reakciderd jarulékat.

A B keresztmetszetben a koncentralt reakciderébol szarmazo hajlito-
nyomaték értéke jobbrdl szamolva:
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(560) M, =t +0,)F,

amelybdl a hajlitonyomatéki fiiggvény jaruléka:

M,
(561) M3qF(x):M4qF(x):_(x_(’€l +4,+ 1L +£4))€| -
s+l

A B keresztmetszetben a megoszl6 erérendszerb6l szarmazo hajlitonyomaték
értéke jobbrol szamolva:

0, +0
amelybdl a hajlitonyomatéki fiiggvény jaruléka:
[M,|
(563) M3qq(x):M4qq(x):_(x_(€1+£z+f3 +f4))zm

Ezen a két szakaszon a hajlitonyomatéki fiiggvények ezek dsszegei:
(564) M3q (X) = M4q (x) = M3qF (x) + M3qq (X) = M4qF (x) + M4qq (x)

Végiil vizsgaljuk csak a koncentralt forgatonyomaték hatasat (79. abra).

M
lFAM r’ C
& -
A Feu

4 143 {3 N

W

U

79. abra
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A kényszereken fellép6 reakciderdk egyszeriien szamithatoak:
(565) M,=0=-M+(0,+0,+0,+0,)F,,
(566) Mo=0=-M+(0,+0,+0,+0,)F,,

A koncentralt forgatonyomaték helyén fellépd hajlitonyomaték balrol, illetve
jobbrol szamolva:

(567) M, =—(,+0,+(,)F,,
(568) My, =0, Fey

A hajlitonyomatéki fiiggvények:

M
(569) MlM(x):MZM(x):M3M(x):xﬁ
(570) M, (x)=—(x—(C, + 0, + 0, +0 ))M;“’

4

A négy hajlitobnyomatéki fiiggvény a torzstarton az eredeti terhelésre az egyes
jarulékok osszege:

(571) M, (x)=Mz(x)+ M, (x)+ M, (x) i=1.4

Az eredeti, statikailag hatarozatlan tarto esetén a B keresztmetszeten fellépd
F, reakcioerdt az aldbbi integral kiértékelésével kaphatjuk meg:
Oy +0, L+l +Ly Lyl 4Ly

j my ()M, (x)dx + j my (M, (¥)dx+  [m (M (dx+ [ m, ()M, (x)dx
(572)F == (+0; /f+[+f+[ I3 +/z+f3+//:+/2+/;
J‘m (x)dx + jm (x)dx + jm (x)dx + jmj(x)dx

(4L, Ly+ly 4Ly

Ezt az er6t innentdl kezdve gy tekinthetjiik, mint a gorgd helyett a rend-
szerben 1évo konstans kiilsé terheld erét, és a tartd egyszeri kéttdmaszi
statikailag hatarozott tartoként megoldhato.

Ezzel ekvivalens eredményre jutunk, ha nem a B keresztmetszetben,
hanem a C keresztmetszetnél talalhato gorgot hagyjuk el. Bar a szamolas
soran mas lesz az M (x) €s az m (x) hajlitonyomateki fiiggvény is, az (572)
kifejezéshez hasonloan meghatéarozott F. eré meg fog egyezni az el6bbi
szamolas végén kapott eredménnyel.
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12. Kifaradas

A méretezésnél mindig a megengedett fesziiltséget vessziik alapul. Ennek
ellenére eléfordul, hogy olyan alkatrészek, amelyek bar helyesen is lettek
méretezve, a megengedettnél nagyobb fesziiltség soha nem is hatott rajuk,
mégis eltornek. Az ilyen, az ismételt igénybevételek soran halmoz6doé karo-
sodasok hatasara a folyashatarnal kisebb fesziiltség esetén bekovetkezo
toréseket faradasos torésnek nevezziik. Az ilyen tipusu torések a torési karok
kb. 90%-aért felelések. Ebben a fejezetben ezek fajtait, a bekovetkezésiikhoz
vezet6 folyamatokat és ezek okait fogjuk megvizsgalni.

Elészor a 20. szazad elején tapasztaltak megfeleléen méretezett szer-
kezetek fesziiltségtullépéssel megmagyarazhatatlan toréseit: az addiginal
nagyobb sebességii vonatok altal hasznalt palyakon sintorések kovetkeztek
be, vagy példaul nagy fordulatszamu tengelyeken eldszor repedések jelen-
tek meg, majd el is tortek a tengelyek. A torési feliiletek vizsgalatanal ki-
deriilt, hogy ezeknek csak egy része friss torés kristalyos feliilettel, a tobbi
része mar oxidalt volt, azaz a torés egy hosszu repedési folyamatnak csak
a végét jelenti.

12.1. A faradasos torések fizikai mechanizmusa

Nincsen tokéletes anyag. Még a legpontosabban gyartott alkatrészek feliiletén
is talalhatok mikrorepedések, feliileti egyenetlenségek, amelyek elsésorban
anyirofesziiltségekre érzékenyek. Ezeken a helyeken, bar csak minimalisan,
de kisebb a keresztmetszet, ezért itt a terhelés hatasara fellép6 fesziiltség is
nagyobb lesz. Az anyagban levo vonalhibak, az tgynevezett diszlokaciok,
amelyek a keménységért is felel6sek, raadasul szintén megakadnak ezeken
arepedéseken, igy a fesziiltség el6bb-utdbb lokalisan tillépi a folyashatart,
igy terhelés hatdsara a repedés tovabbterjed.

Otvozetek esetében idével kivalasok, igynevezett precipitaciok johetnek
létre. Ezek szintén diszlokaciogyijtd tulajdonsaguk miatt jarulnak hozza
a fesziiltség lokalis ndvekedéséhez és repedések kialakulasahoz, terjedéséhez.
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De ugyanilyen hatasuk van a kis sugar lekerekitéseknek, furatoknak, mene-
teknek vagy karcolasoknak, zarvanyoknak.

Ha a mikrorepedés elér egy bizonyos méretet, mar nem elsésorban
a nyird-, hanem a huzoéfesziltségek fogjak megszabni a terjedését. Ekkor
a novekedésének iranya a maximalis huzofesziiltség iranyara merdleges
lesz. Innentdl nevezziik makrorepedésnek. Amikor a keresztmetszet nagy-
saga lokalisan elegendden lecsokken, az addig elviselt terhelés hatasara
bekovetkezik a torés. Emellett még egy alkatrész véletlen tulterhelése is
létrehozhat mikrorepedéseket, amelyek normal iizemmenet mellett a fent
ismertetett modon tovabbterjedhetnek a torésig.

12.2. A terhelések ismétlésszamanak hatasa
a repedésnovekedésre

Fontos az anyag faradasanak idébeli elérehaladasa szempontjabol az is, hogy
a terheld fesziiltség (ami alatt itt a terheld erékbdl és forgatdnyomatékokbol
a tarté nominalis, hibamentes atmérdje alapjan szamolt fesziiltségértéket
értjiik) mennyire kézeliti meg a megengedett fesziiltséget. A 80. abran ennek
a jelenségnek egy kvalitativ bemutatasa lathato. Ha egy kezdetben adott
nagysagu repedésre nagysagrendileg 10°—10°¢ alkalommal kiilonb6z6 nagy-
sagu fesziiltségeket 1étrehozd terhelések hatnak, akkor a repedés méretének
valtozasa fliiggni fog az adott terheld fesziiltség nagysagatol. A konkrét
kisérleti eredmények azt mutatjak, hogy bar a repedés novekedése expo-
nencialis jellegli, a folyamat elején a repedés mérete minden fesziiltség
esetében linearisan valtozik.

repedés mérete

o
]
/ 03
terhelések szama
80. abra

Hao >0 >0, > o, akkor minél nagyobb a terhel6 fesziiltség, annal

meg

kevesebb szamu terhelés hatasara fogja elérni a repedés mérete azt a kriti-
kus értéket, amikor a keresztmeszet-csokkenés hatasara a fesziiltség abban
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a konkrét keresztmetszetben tallépi a megengedett fesziiltséget, ¢s az anyag
eltorik. Kisebb terheld fesziiltségek esetében a repedés nemcsak lassabban
terjed, hanem nagyobb végs6 méretet is elérhet, hiszen ekkor a kisebb terhel-
fesziiltség miatt a repedésnél talalhato keresztmetszetben a fesziiltség joval
kisebb keresztmetszetnél éri csak el a toréfesziiltség értékét. Van azonban
egy hatar, amelynél kisebb fesziiltségek (példaul a 80. dbran a o, esete)
nem elegenddek az adott repedés méretének néveléséhez, igy itt a terhelés
lehetséges ismétléseinek szama praktikusan végtelen.

12.3. Kifaradasi hatar

Azt a fesziiltségértéket, amellyel végtelenszer terhelve az alkatrészt sem
torik az el, kifaradasi hatarfesziiltségnek nevezziik, jele: o. A 80. dbran
bemutatott, az egyes anyagok viselkedését kvalitativan bemutato abra alap-
jaul szolgald méréseket sok kiilonbozo nagysagi o fesziiltségre elvégezve
¢és a fesziiltségértékeket annak a terhelésszam logaritmusanak a fliggvé-
nyében abrazolva, amely alkalmazasa toréshez vezetett, a 81. abran lathato
viselkedést tapasztaljuk. A o toréfesziiltséget egyszer alkalmazva is eltdrik
az anyag, a o, hatarfesziiltség esetében viszont (csak dnmagéban a hatar-
fesziiltség miatt) sosem.

o
O-B \
of
lg(ismétlésszam)
81. abra

12.4. A Wohler-esetek

A kiilonboz6 tipust anyagok raadasul nem egyforman érzékenyek a kiilon-
boz6 terhelési mddokra. A 2.6.2. alfejezetben bemutatott Wohler-esetek
koziil az elso, a statikus veszi igénybe legkevésbé a szerkezeteket, a maso-
dik és a harmadik esetekben mar sokkal kisebb fellépd fesziiltség esetében
is tonkremennek.
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12.4.1. Lengofesziiltség

Ha egy alkatrészre olyan jellegli valtakozo fesziiltség hat, amely egy kereszt-
metszetet néha pozitiv, néha negativ fesziiltséggel terhel, lengdfesziiltségrol
beszéliink.

Ilyen példaul egy két végén agyazott vizszintes forgo tengely, amelyre
tobbiranyu Osszetett igénybevételnek (htizas [nyomas] és hajlitas) van kitéve.
Az egyes szalakat a szal pozicidjatol fliggben (a semleges réteg folott vagy
alatt helyezkedik el éppen) hiizd- vagy nyomofesziiltség terheli. A tengely
fél fordulata utan azonban a fesziiltség eldjele mar ellentétes, igy egy adott
keresztmetszet minden pontja folyamatosan valtakoz6 iranyu fesziiltségnek
van kitéve (kivéve a semleges szalat). Hasonloan, a nyirofesziiltség iranya
is a tengely forgasaval valtakozik.

Jeloljik a tengelyre hatd legnagyobb pozitiv normalis fesziiltséget
o .-szal, a legnegativabb normdlis fesziiltséget o, -nel. A lengdfesziilt-
ség definicidja szerint g, >0 ¢és g, . < 0. A fesziiltség iddbeli véltozasa
szinuszgorbét kovet.

Definialjuk a kozépfesziiltséget mind normalis, mind csusztatofesziilt-
ségre:

(573) O.m — O-min go-max

A fesziiltségek kozépfesziiltségtol valo legnagyobb eltérését fesziiltség-
amplitudonak nevezziik:

Hao -0 =0 —o0_,azazo =0, akkor aterhelés szimmetrikus, és tiszta
max m m min m

lengd igénybevételrdl beszéliink.

12.4.2. Liiktetofesziiltség

Ha az alkatrész csak egyik fajta elgjelti fesziiltségnek van kitéve, azaz
0.20éoc . >0vagyo <0¢ o <O0,akkor liktetéfesziiltségrol
beszélink. Ilyen példaul egy felvono drotkétele, amely csak huzofesziilt-
ségnek van kitéve. Hao , =0 vagy o =0, akkor a terhelés ugynevezett

tiszta liiktetd igénybevétel.
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12.4.3. A kifaradasi hatar értelmezése nem statikus terhelésre

Az aszimmetrikus terhelést tehat egy allando kozépfesziiltség és egy szi-
nuszos valtozo fesziiltség 6sszegének tekinthetjiik.

Leng® és liiktetd igénybevétel esetében a konstans tag o (amely tiszta
lengd igénybevétel esetében nulla), a szinuszos tag amplitadoja pedig o,.
Leng6 igénybevétel esetén o — o, < 0, liiktetd igénybevétel esetén pedig
o —o0,>0. Ekkor a kifdradasi hatar valdjaban ezen két komponens dssze-
gének maximumat jelenti:

(575) o, =

0.1+ 0,

Ha a kozépfesziiltség nulla, a kifaradasi hatart leng6szilardsagnak (o, ) nevez-
ziik. Ha o= 0, a kifaradasi hatért liiktetdszilardsagnak (o) nevezziik.

12.5. Terhelések jellemzése aranyszamokkal

Az elébbiekben lathattuk, hogy a faradasos torés bekovetkezésének idejét,
illetve hogy egyaltalan bekdvetkezik-e, a kdzépfesziiltség és a fesziiltség-
amplitudo egyarant befolyasolja. Ezen két fesziiltség aranya tehat fontos
tényez6, amelyet jeloljiink v-vel:

(576) y, =—=
O-max
A v arany értéke —oo-tdl 1-ig valtozhat.
Statikus terhelésnél v =1, mivel o, =0 =o0,¢ésigyo =o.

Leng6 terhelésnél —0 <v_<0,5,hac_>0,és-1<v <0,hac_<O0.
Specidlisan tiszta leng6 terhelésnél, mivel o =—-0 . =o0,¢ésigy o =0,
ezértv = 0.

Liikteté terhelésnél 0,5 < v < oo. Specialisan, ha o, = 0, akkor
o =0 J/2,igyv =0,5,éhao =0, akkor v = oo,

Az ugynevezett aszimmetriatényezot a kdvetkezoképpen definidljuk:

oO._.
(577) y, =z
o

max

X min®

Statikus terhelésnél = 1, mivel 6, =0,
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Lengd terhelésnél —o <7 <-1,hac_>0,¢és—-1<r <0,hac <O0.
Specialisan tiszta leng6 terhelésnél, mivel 6. =—0 . ,azazo_= 0, ezért
max min m
ro=-1
Liiktet6 terhelésnél 0<r <1,hac >0¢so  >0,és1<r <oo, ha
o . <0ésc <O0.Specialisan, tiszta liikteté terhelésnél, hao_. =0, akkor

max

r =0,éshao =0,akkorr =oo.
Az egyes eseteket grafikusan a 82. abra foglalja ssze.

lengd liktetd
e — e
o1 r=21 “1<r<0 r=0 0<r<l

Umax
Omax O-a¢
o Pay
~Omax
. —0<r<-1 r =00
tiszta

lengd tiszta
liiktetod

1<r<ow

82. abra

Az aszimmetriatényez6t a kiillonb6zo tipusu terhelések esetén érvényes
hatarfesziiltségek indexéiil szoktak hasznalni: o_ példaul a lengészilardsagot
jeloli, o, a liiktet6szilardsagot. A statikus hatarfesziiltséget ezzel a jeldléssel
o -nek kéne jelentenie, de ezt, félreérthetdsége miatt, nem szokds hasznalni.

A v és az r aranyszam kozotti kapesolat egyszeriien meghatarozhato:

(578) v = m__ ~min max _ min 4 7 max =0’5},+0,5

o
20, 20, 20,

max



Angol kifejezések gyiijteménye

Magyar—angol

befogas fix support

befogott tartd fixed beam / cantilever beam

befiiggesztett (tartd) drop-in (beam/segment)

biztonsagi tényezo factor of safety

centrifugalis masodrendii nyomaték product of inertia

csavards, csavaronyomaték torsion

csuklo pin / hinge

csuszasi surlodas kinetic friction

csusztatofesziiltség shear stress

csusztato rugalmassagi tényezd shear modulus

deformacio strain

dinamikus kihajlas dynamic buckling

egyenszilardsagu tartd beam of uniform strength

egykonzolos kéttamaszu tartd overhanging beam

egyszerl kéttamaszu tartd simply supported beam

egytengelyl uniaxial

elfordulas rotation

eredd eré(rendszer) resultant

erépar couple

fajlagos nyulas engineering normal strain, Cauchy
strain

ferde hajlitas oblique bending

fesziiltség stress

forgatonyomaték torque

fofesziiltség principal stress

f6-masodrendii nyomaték principal moment of inertia

fotengely principal axis

gordiild surlodas rolling resistance



190 MECHANIKA TI.
gorgd roller
hajlitas bending

hajlitonyomatéki abra
helyettesitd erérendszer
hazas

inerciasugar

karcsusag

karcsusagi tényezo
keresztmetszeti tényezd
kétkonzolos kéttamaszu tarto
kifaradas

kihajlas

koncentralt erd

koncentralt forgatonyomaték
kiilpontos

lehajlas

magidom

masodrend(i nyomaték

megengedhetd fesziiltség
megnyulas

megoszlo erérendszer
nyiras

nyirderéabra
nyirofesziiltség
nyomas
nyomoerdabra
plasztikus kihajlas
racsos szerkezet
reakcioerd

rudak ko6zotti csuklds kapcsolat

rugalmas kihajlas
rugalmassag

rugalmas szal

skalarszorzat

statikailag hatarozatlan tart6
statikailag hatarozott tarto
surlodas(i erd)

(bending-)moment diagram
equipollent force system
tension

radius of gyration
slenderness

slenderness ratio

section modulus

double overhanging beam
fatigue

buckling

point load

ideal / concentrated moment
eccentric

displacement

core of section

second moment of area, area moment
of inertia

permissible stress
elongation

distributed load

shear

shear force diagram

normal stress

compression

axial force diagram

plastic buckling

truss

reaction

hinged connection / internal hinge/pin
elastic buckling

clasticity

elastic curve

dot product

statically indeterminate beam
statically determinate beam
friction (force)
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surlodasi szog
szakitodiagram

szaraz (Coulomb-) surlodas
tamadaspont

tamasz

tamaszkoz

tapadasi surlédas
tartd

tehetetlenségi ellipszis
terhelés

tobbtamaszu tartd
vektorialis szorzat

Angol-magyar

angle of friction

area moment of inertia
axial force diagram
beam

beam of uniform strength
bending
bending-moment diagram
buckling

cantilever beam

Cauchy strain
compression
concentrated moment
continuous beam

core of section

couple

cross product
displacement

distributed load

dot product

double overhanging beam
drop-in (beam/segment)
dry friction

angle of friction
stress-strain diagram
dry friction

point of application
support

span

static friction
beam

ellipse of inertia
load

continuous beam
cross product

surlodasi szog

masodrendli nyomaték
nyomoerdabra

tartd

egyenszilardsag tartd
hajlitas

hajlitonyomatéki abra
kihajlas

befogott tartd

fajlagos nyulas

nyomas

koncentralt forgatonyomaték
tobbtamaszu tartd
magidom

erdpar

vektorialis szorzat

lehajlas

megoszlo erérendszer
skalarszorzat

kétkonzolos kéttamaszu tarto
befliggesztett (tarto)

szaraz (Coulomb-) surlodas
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dynamic buckling
eccentric

elastic curve
elastic buckling
clasticity

ellipse of inertia
elongation
engineering normal strain
equipollent force system
factor of safety
fatigue

fix support

fixed beam

friction (force)
hinge

hinged connection
ideal moment
internal hinge/pin
kinetic friction
load

moment diagram
normal stress
oblique bending
overhanging beam
permissible stress
pin

plastic buckling
point load

point of application
principal axis
principal moment of inertia
principal stress
product of inertia
radius of gyration
reaction

resultant

roller

rolling resistance

dinamikus kihajlas
kiilpontos

rugalmas szal

rugalmas kihajlas
rugalmassag

tehetetlenségi ellipszis
megnyulas

fajlagos nytlas

helyettesitd erérendszer
biztonsagi tényezd

kifaradas

befogas

befogott tartd

surlodasi erd

csuklo

rudak ko6zotti csuklds kapcsolat
koncentralt forgatonyomaték
rudak ko6zotti csuklds kapcsolat
csuszasi surlodas

terhelés

hajlitonyomatéki abra
nyirdfesziiltség

ferde hajlitas

egykonzolos kéttamaszu tartd
megengedhetd fesziiltség
csuklo

plasztikus kihajlas
koncentralt erd

tamadaspont

fétengely

f6-masodrendli nyomaték
fofesziiltség

centrifugalis masodrendii nyomaték

inerciasugar
reakciderd

ered6 erd(rendszer)
gorgd

gordiilé surlodas
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rotation

section modulus
second moment of area
shear

shear force diagram
shear modulus

shear stress

simply supported beam
slenderness
slenderness ratio

span

static friction

statically determinate beam
statically indeterminate beam
strain

stress

stress-strain diagram
support

tension

torque

torsion

truss

uniaxial

elfordulas

keresztmetszeti tényezd
masodrendli nyomaték
nyiras

nyirderéabra

csusztatd rugalmassagi tényezo
csusztatofesziiltség
egyszerl kéttamaszi tartd
karcsusag

karcsusagi tényezo
tamaszkoz

tapadasi surlodas
statikailag hatarozott tarto
statikailag hatarozatlan tart6
deformacio

fesziiltség

szakitodiagram

tamasz

hazas

forgatonyomaték

csavards, csavaronyomaték
racsos szerkezet
egytengelyli
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